B****n 发帖数: 11290 | 1 我仔細想了一下 發現不需要利用counting measure
其實你老師給的例子很好
f(x)=1/(xlogxlogx)
int(1/(xlogxlogx))=-(logx)^(-1)
為什麼一取小於一的次方就不可積了呢
原因是這個logx 相對於x very small
如果你想要弄一個大於一的次方在[0,1]不可積的函數
那你應該取一個積分後為類似1/(log(1/x))的函數 ,log(1/x)相對於 1/x very small
f=d/dx(1/log(1/x))
f=(log(1/x))^(-2)/x
可知f取一個大於一的次方在[0,1]就不可以積了
這樣你把兩個函數加起來 就只需要lesbegue measure
f=f1*i[0,1]+f2*i[2,infinity)
f1==(log(1/x))^(-2)/x
f2=1/(xlogxlogx) |
|
p*****n 发帖数: 758 | 2 f is a non-negative Lesbegue integrable function on [0,1]. If for every n=1,
2,3... integration of f^n on [0,1]=integration of f on [0,1], show that f
must equals to a characteristic function of a set almost everywhere.
thx |
|
B****n 发帖数: 11290 | 3 non-measureable set in [0,1] with Lesbegue measure
以\ |
|