b******v 发帖数: 1493 | 1 第13题我的想法是这样的,不知道对不对
P(exactly one accept) = N*p*(1-p)^{N-1}
logP = logN + log(p/(1-p)) + Nlog(1-p)
d(logP)/dN = 0 ==> N = 1/log(1/(1-p)) |
|
b******v 发帖数: 1493 | 2 第13题我的想法是这样的,不知道对不对
P(exactly one accept) = N*p*(1-p)^{N-1}
logP = logN + log(p/(1-p)) + Nlog(1-p)
d(logP)/dN = 0 ==> N = 1/log(1/(1-p)) |
|
|
j*****h 发帖数: 252 | 4 门外汉请教:知道化合物的水溶性怎么评估?LogP参数能评估它的水溶性?LogP的大小
和水溶性大小相关么?
感谢! |
|
m*********1 发帖数: 42 | 5 整天比来比去,换个口味做个题:设psi(x)为Chebyshev psi函数, 即psi(x)=sigma_{p=<
x}logp [logx/logp], 其中p泛指素数, [y]指小等于y之最大整数。证明或证伪:对任
意正数epsilon, psi(x)-x=o(x^{1/2+epsilon})。 |
|
b**u 发帖数: 2761 | 6 Yup, agree. If the compound is too lipophilic, it will somehow remain in the
membrane. I think I've seen
a graph of Permeability vs LogP. There is a range of optimum LogP.
therapeutic |
|
U******m 发帖数: 423 | 7 当然是有一个最优的logp了,经常是一个二次曲线的关系。
Raj经常喜欢搞极端,我说的是相对于先导结构,增加logP,他就非要理解成增加到很大
,搞得got stuck in membrane.
哼哼... |
|
E*******F 发帖数: 2165 | 8 这个很随意的
比如你可以定义logP(red) = log(0.5) + c*log(red_count/total_count + 0.5)
c是一个系数
还要保证概率小于一,最后得有个配分 |
|
R*******N 发帖数: 7494 | 9 概而言之,对后验概率P(Q,V|O),
(Q是参数,V是变量,O是观察结果)
E-step计算P(V|O,Q),
M-step计算argmax logP(O,Q)=log{SIGMA(P(O,Q,V)},
如此迭代即得到大后验概率的Q,
Q是自由变量(free variable),
之所以引入log概率,
我认为可能是Bayes公式的缘故,
可参考:
Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society,
Series B, 39(1):1–38. |
|
w***y 发帖数: 2537 | 10 "has not passed windows Logp testing to verify its compatibility with
windows XP"
how to solve it? the webcamera doesn't work w/o the driver setup properly
Thanks |
|
w***y 发帖数: 2537 | 11 "has not passed windows Logp testing to verify its compatibility with
windows XP"
how to solve it? the webcamera doesn't work w/o the driver setup properly
Thanks |
|
j*****h 发帖数: 252 | 12 谢谢nanomotor1.
我查了下,这个octanol-water partition coefficient是化合物分别在octanol和水相
的溶解度的比值,所以想要知道一个小分子的溶解度,通过这个值能不能知道,还是要
通过实验方法指导。
用pH值打个比方,pH=3,知道溶液的[H]是10^(-3)mol....如果一个化合物的XLogP3是3
,能知道它在水里面的溶解度值么?不知道LogP有没有什么公式求到分子的溶解度?
感谢!! |
|
d*****h 发帖数: 61 | 13 1. 可以用logP 和 melting point 估计,很粗略。
2. 根据结构用ACDlabs算
3. 实验测(即可用hplc测也可目测估计) |
|
x******g 发帖数: 318 | 14 [p^a/q^b]能取遍所有的自然数
p,q为固定的正整数,且logp(q)不是有理数;a,b可以取任意的自然数. |
|
e*******y 发帖数: 73 | 15 Is there always a prime in the intervals
(n^2,(n+1)^2),
(n,n+n^{1/2}),
(N^2+N+2)/2<=M<=(N^2+3*N+2)/2(in conjecture A),
OR
(N^2+N)/2<=M<=(N^2+3*N)/2(in Conjecture B)? {{{note that
we only consider it, for sufficiently large n}}}
It is just the same thing(Opperman conjecture)!
It also equlvalent to
p'-p << p^{1/2}logp,
where p',p are consecutive primes. And we can easily obtain
under Riemann hypothesis. |
|
|
b*********f 发帖数: 2125 | 17 1, 你的给药剂量是多少?iv 1mpk ? po 10mpk?给个Cmax没有意义
2,貌似溶解度问题,HPbCD 最多用10%, 好好做一下formulation,10%Cremophor EL
不work?
3,本身分子permeability不好, F《30% ,引入亲水基团,降logP |
|
s******r 发帖数: 30 | 18 Thank you very much for your infor. I also read of this unbound ratio
parameter. Seems so much to learn in CNS drug discovery, but very
interesting.
btw, NP-12 has been discontinued due to lack of efficacy in Phase II. But I
really wonder its in vitro PK properties, considering its high lipophilicity
, high logP, low ligand efficiecy....
Thanks. |
|