R******e 发帖数: 623 | 1 怎么写出$L= {a^{n!}},n\in \mathbb(N)$的文法?
就是重写规则 |
|
t**g 发帖数: 161 | 2 写公式用到\mathbb,可是TexnicCenter报错:
Too many math alphabets used in version normal.
哪位高手给看看,多谢! |
|
D**o 发帖数: 2653 | 3 注意作者 \author{YHBKJ}
Atiyah-Bott Localization 1
2012-09-05 09:24:19
\documentclass[a4paper,12pt]{article}
\usepackage{amsfonts}
\usepackage{amsmath,amsthm,amssymb}
\usepackage{CJK,graphicx}
\usepackage{amscd}
\usepackage{amssymb}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\newtheorem{definition}{Definition}[section]
\newtheorem{lemma}{Lemma}[section]
\begin{document}
\title{\textbf{\Huge{Atiyah-Bott Localization 1}}}\author{YHBKJ}\date{}\
maketitle
\begin{ab... 阅读全帖 |
|
b****t 发帖数: 114 | 4 Hi all,
I want to add some extra margins on either side.
like this
39 Consider the integer-optimization problem: \\
40 \\
41 \begin{tabbing}
42 $\mathbf{(P)}$ \= \kill
43 \> find $\underline{x}^*$ such that \\
44 \[ \underline{x}^* \in \argmin{\underline{x} \in \mathbb{X}}\: g (\
underline{x}) \]
45 \< where $\mathbb{X} \subseteq\mathbb{Z}^d$ and $\mathbb{Z}^d$ is
the set of $d$-dimensional
46 integer vectors, and $g:\mathbb{X} \to \mathbb{ |
|
t**s 发帖数: 4026 | 5 能不能自动自动换行啊,一个很长的方程,比如下面这一个,有包子好伐
\noindent\(\frac{1}{2 \gamma \sigma _1 \sqrt{1-\rho _{2,1}^2}}\left(2 (r-\m
athbf{v}) (-1+\gamma ) \sqrt{1-\rho _{2,1}^2} \left(\sigma _4 \rho _{4,1}
g_{\gamma }{}^{(0,0,0,0,1)}[t,S,\mathbf{v},r,\mathbb{D}]+\sigma _3 \rho _{3,
1} g_{\gamma }{}^{(0,0,0,1,0)}[t,S,\mathbf{v},r,\mathbb{D}]+\sigma _2
\rho _{2,1} g_{\gamma }{}^{(0,0,1,0,0)}[t,S,\mathbf{v},r,\mathbb{D}]\right)+
2 S \sigma _1^2 \sqrt{1-\rho _{2,1}^2} \left(\sigma _4 \rho _{4,1} \left(g_{
\gamma
}{}^{(0, |
|
g****g 发帖数: 1828 | 6 In probability theory, the normal (or Gaussian) distribution, is a
continuous probability distribution that is often used as a first
approximation to describe real-valued random variables that tend to cluster
around a single mean value. The graph of the associated probability density
function is “bell”-shaped, and is known as the Gaussian function or bell
curve:[nb 1]
f(x) = \tfrac{1}{\sqrt{2\pi\sigma^2}}\; e^{ -\frac{(x-\mu)^2}{2\sigma^2}
},
where parameter μ is the mean (location of the pe... 阅读全帖 |
|
f*********g 发帖数: 632 | 7 Chomsky–Schützenberger theorem. If L is a context-free language admitting
an unambiguous context-free grammar, and a_k := | L \ \cap \Sigma^k | is the
number of words of length k in L, then \sum_{k = 0}^\infty a_k x^k is a
power series over \mathbb{N} that is algebraic over \mathbb{Q}(x). |
|
s******s 发帖数: 8 | 8 \usepackage{amssymb}
$\mathbb{R}^+$
$\mathbb{Z}^+$ |
|
d*******e 发帖数: 1649 | 9 用文字。
\mathbb{N),\mathbb{R} |
|
R******e 发帖数: 623 | 10 $f(x)$ is a transcendental function over $mathbb{Q}(x)$,and analytic in disk
with natural boundary. If $a \gt 0$ and $a \in mathbb{Q}$, then $f(a)$ is a
transcendental number.
Has this assertion been proved? Any reference? |
|
G********d 发帖数: 10250 | 11 How do you define rational numbers?
If you define it as fraction field of the integer ring \mathbb{Z},
then this question comes naturally from the fact that \mathbb{Z} is a UFD. |
|
N**G 发帖数: 392 | 12 I have an interesting question for you, it can be solved in elementary
school techniques. It comes from my own research.
begin{equation}
(2-N)a+2b+d_1+d_2+ldots+d_5=1,\
Na^2-2ab+d_1^2+d_2^2+ldots+d_5^2=1
end{equation}
Show that the number of integral solutions $(a,b,d_1,d_2,ldots,d_5)$ is
independent of $N\geq 0,N\in\mathbb{Z}$. |
|
n********g 发帖数: 6504 | 13 小数部分的A=\sum_{i\in\mathbb{N}}\frac{a_i}{10^i}
这没实数啥事吧,只需要整数和自然数。 |
|
g****g 发帖数: 1828 | 14 标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(
statistical dispersion)上的测量。标准差定义为方差的算术平方根,反映组内个体
间的离散程度。测量到分布程度的结果,原则上具有两种性质:
1. 为非负数值,
2. 与测量资料具有相同单位。
一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所
差别。其公式如下所列。
标准差的观念是由卡尔·皮尔逊 (Karl Pearson)引入到统计中。
目录
[隐藏]
* 1 阐述及应用
* 2 标准差的定义及简易计算公式
o 2.1 标准计算公式
o 2.2 简化计算公式
o 2.3 随机变量的标准差计算公式
o 2.4 样本标准差
o 2.5 连续随机变量的标准差计算公式
o 2.6 标准差的性质
* 3 范例
* 4 正态分布的规则
* 5 标准差与平均值之间的关系
* 6 几何学解释
... 阅读全帖 |
|
b*w 发帖数: 2062 | 15 i am using winedt 5.4 beta, plus miktex, but seems the $\mathbb{R}$ never
works for me ;( it always says it's an "Undefined control sequence", really
weird. and it happens no matter what template i use, either just article, or
another one provided by the publiser llncs.
any help will be really appreciated! |
|
b*w 发帖数: 2062 | 16 i found one package called "mathpazo", however after i included it the fonts
in the entire paper were changed but the \mathbb{R} still displayed as a
single R, any good pckage on your mind? thanks
really
or |
|
|
|
h******s 发帖数: 176 | 19 ☆─────────────────────────────────────☆
futureguy (会飞的猪) 于 (Wed Jul 16 04:41:20 2008) 提到:
Hi, everyone. Sorry to interrupt you and sorry that I cannot type Chinese in
my office. My question is that how to type the mathematical symbol for
indicator function in Latex. I have tried \mathbb{1}, but it does not work.
Thank you very much
☆─────────────────────────────────────☆
kkff (克复) 于 (Wed Jul 16 12:16:41 2008) 提到:
in
.
Your question is not very clear. Do you want it be part of normal t |
|
|
D******y 发帖数: 1296 | 21 之前在windows下用LeD还有WinEdt,安的是Miktex2.7,打公式的时候挺喜欢用
\mathbbold 字体
现在换了apple,MACtex并不支持这个字体
但是如果把mathbbold换成\mathbb 字体
虽然英文字母与上面的mathbbold一样,但是阿拉伯数字却显示完全不同,不再是加粗
的阿拉伯数字,而是特别诡异的不知道什么东西。。
请问一下有没有大侠遇到这种情况
谢谢 |
|
t*s 发帖数: 1504 | 22 win64 vim7.3安装完了什么都没改
现在的情况是vim中的拼写检查只看注释(它好像懂latex语义)
例如
\mathbb{worng1 wrod1}: worng2 wrod2
% worng3 wrod3
默认它唯一指出的错误是worng3 wrod3,其他都忽略了
怎么办!!! |
|
|
l********e 发帖数: 3632 | 24 曲率如果只截面曲率(sectional curvature)那么只有三种
K=1的是球面,包括高维球面,或者他们的商空间,比如透镜空间(lens space,prizm
manifold等)
K=1的是欧式空间,或者它的商空间,比如环面,或者克莱因瓶等
K=-1的是双曲空间\mathbb H^n,或者它的商空间。
最后如果流行是联通的,那么局部常值和整体常值是一个意思。
如果你指的是其他曲率比如Ricci曲率,就复杂了。 |
|
t**s 发帖数: 4026 | 25 \text{If}\left[\Re(a)>-1\land \Re(b)>-1\land (c\notin \mathbb{R}\lor \Re(c)\
leq 1),\Gamma (a+1) \Gamma (b+1) \, _2\tilde{F}_1(1,a+1;a+b+2;c),\text{
Integrate}\left[\frac{x^a (1-x)^b}{1-c x},\{x,0,1\},\text{Assumptions}\to \
Re(a)\leq -1\lor \Re(b)\leq -1\lor c>1\right]\right] |
|
c*******e 发帖数: 150 | 26 note that the process Y_t satisfies dY_t = T_t Y_t dW_t
it is called the stochastic exponential of (T_t)_{t\in[0,T]}, sometimes
denoted as \epsilon(T)_t
If (T_t)_{t\in[0,T]} satisfies the Novikov condition, i.e.
\mathbb{E}[exp(1/2 \int_0^T T_s^2 ds)] < +\infty
then Y_t is also called an exponential martingale, since it is a true
martingale on [0, T] |
|