s**********r 发帖数: 497 | 1 The information you are talking about comes from Wolfram MathWorld. This is
a trusted site and is a great resource for Mathematics. I read it alot and
find it helpful.
This is the whole quote from the article:
"It is not known if pi+e, pi/e, or ln pi are irrational. However, it is
known that they cannot satisfy any polynomial equation of degree <=8 with
integer coefficients of average size 10^9"
Another quote is:
"At least one of pi×e and pi+e (and probably both) are transcendental, but
transcen... 阅读全帖 |
|
t******n 发帖数: 2939 | 2 ☆─────────────────────────────────────☆
sate (blah) 于 (Fri May 24 13:11:00 2013, 美东) 提到:
π+e 是无理数吗?
☆─────────────────────────────────────☆
CleverBeaver (我不是Otter) 于 (Fri May 24 13:12:16 2013, 美东) 提到:
这个题好。
☆─────────────────────────────────────☆
sate (blah) 于 (Fri May 24 13:14:04 2013, 美东) 提到:
简洁明快吧。
☆─────────────────────────────────────☆
CleverBeaver (我不是Otter) 于 (Fri May 24 13:14:40 2013, 美东) 提到:
而且我真的不知道。
☆─────────────────────────────────────☆
CleverBeaver (我不是Otter... 阅读全帖 |
|
d****g 发帖数: 7460 | 3 其实呢,就是说如果10X10X10。。。能整除一个数N,那么1/N就是有限小数,
反之无限循环。。
为什么循环呢?因为一个数除以N,余数最多有N-1种情况,所以必然循环。。
而且循环节最长为N-1,好比1/7=0。145628,循环节长度为6。
但是1/3=0。333,循环节长度为1。所以不是所有的质数P都有P-1那么长的
循环节。
谁有呢,7, 17, 19, 23, 29, 47, 59, 61, 97。。。。
什么样的数有,什么样的数没有,这样的数有无数多个吗?
哈哈,这个问题居然还没有人能回答!是个OPEN QUESTION。。
http://mathworld.wolfram.com/CyclicNumber.html
"It has been conjectured, but not yet proven, that an infinite number of
cyclic numbers exist. "
http://mathworld.wolfram.com/FullReptendPrime.html |
|
|
|
|
|
|
|
|
|
o*****e 发帖数: 435 | 12 Anybody interested "dimension" can take a look at this page.
http://mathworld.wolfram.com/Dimension.html
http://mathworld.wolfram.com/HausdorffDimension.html d=log(N)/log(s)
And something about the "coastline paradox"
Determining the length of a country's coastline is not as simple as it first
appears, as first considered by L. F. Richardson (1881-1953). In fact, the
answer depends on the length of the ruler you use for the measurements. A
shorter ruler measures more of the sinuosity of bays and |
|
|
|
|
|
b********n 发帖数: 29 | 17 http://mathworld.wolfram.com/BumpingAlgorithm.html
我觉得他说的可能是这个。
可是和楼主问的应该不是很相关。
Bumping Algorithm是用来构造这样一个杨矩的,每插入一个新元素需要O(n+m)的时间。
楼主问的矩阵是杨矩的一个特例,可是问题在于是已经构造好的一个杨矩,要把它重新
恢复成sorted的顺序显然用O(n+m)是不可能的。O(n+m)连遍历矩阵一遍都不能完成。
我上面post的stackoverflow的帖子里的最佳回复也证明了为什么楼主的问题需要
O(n*m*log(min(m,n))) |
|
|
|
|
|
|
|
|
|
i*******t 发帖数: 499 | 26 1曾今被定义成质数。我小时候好像也读过把1当质数的书。
http://mathworld.wolfram.com/PrimeNumber.html
" the number 1 used to be considered a prime (Goldbach 1742; Lehmer 1909,
1914; Hardy and Wright 1979, p. 11; Gardner 1984, pp. 86-87; Sloane and
Plouffe 1995, p. 33; Hardy 1999, p. 46)..." |
|
|
|
|
|
t******l 发帖数: 10908 | 31 这事出有因是因为一道破题涉及到平行公理。于是俺就强调了一下平行公理是欧几里德
平面几何的核心,让娃上网查 Euclid's fifth postulate 后解释给俺听。
然后娃开始罗罗嗦嗦开始叙述 parallel 然后 angle 啥的。。。
俺一听 angle 就急了,说特么欧几里德又不是文科生说话那么罗嗦,你说的这个是
theorem of angles and parallel lines。。。平行公理就是“过直线外一点有且仅有
一条平行线”,你说的这些都可以从 postulate 开始证明。。。如果追求概念图景但
追求特别严格的扣牛角尖的话,这么整。。。
首先用平行公理证明四个直角的矩形存在。。。娃目瞪口呆说这也要证明, 我说废话
你们数学老师画了三个直角咋知道第四个一定是直角,然后我拿出一个排球说,看看排
球上的球面上矩形好了。。。
遂左膀往“角度”一路奔过去,可以证明娃你刚才说的 theorem of angles and
parallel lines。。。继续往下还可以证明三角形内角和是 180 度。。。娃又目瞪口
呆说这也要证明?我问你们数学老师证明过没有?娃想了想... 阅读全帖 |
|
|
|
|
|
|
k*******2 发帖数: 4163 | 37 是真的:(http://mathworld.wolfram.com/LHospitalsRule.html)
Historically, this result first appeared in l'Hospital's 1696
treatise, which was the first textbook on differential calculus.
Within the book, l'Hospital thanks the Bernoulli brothers for
their assistance and their discoveries. An earlier letter by
John Bernoulli gives both the rule and its proof, so it seems
likely that Bernoulli discovered the rule (Larson et al. 1999, p. 524). |
|
|
|
m**********b 发帖数: 8 | 40 我是天大99届自动化系毕业生,现在中科院读研。
和大家见个面,问声好。
有空可以到小可的网站看看,mathworld.yeah.net |
|
m**********b 发帖数: 8 | 41 你是不是也很喜欢matlab. Me too!
而且我们也是校友, 小可是99届自动化系毕业的.
我的网站去过没有? http://mathworld.yeah.net
Hope for your friendship. |
|
s****h 发帖数: 3979 | 42 那本书有对abel transform,hankel transform这些概念有比较
清楚的介绍的?
我没有任何图像方面的背景,选了门课,老师把图像的东西泛泛地讲了两周,
基本没弄懂。
现在要做作业,手头的资料只有mathworld上面的一点定义,发现实在不知道如何做。 |
|
|
s***n 发帖数: 9499 | 44 You're right,!
If a = 2,
it's a hypersphere.And there are analytical expression for this problem:)
If a = 1,
it's a polyhedral, and the analytical solution is also easy.
But if a != 1 or 2, does it has analytical solution or a talbe about it?
I think it is a classic problem, but can't find it via google, mathworld, etc.
any keyword about the problem is highly appreciated:) |
|
|
|
|
|
|
|