由买买提看人间百态

topics

全部话题 - 话题: nintegrate
(共0页)
a***u
发帖数: 72
1
来自主题: Computation版 - Re: mathematica 提问 "integrand not numeri
第一个例子,
定义吧:
functmp0[y_,t_]:=Block[{x},
NIntegrate[ g(x,y,t), {x,-Infinity,Infinity} ]/
NIntegrate[ h(x,y,t), {x,-Infinity,Infinity} ]
]
f[t_]:=Block[{y},
NIntegrate[functmp0[y,t],{y,-Infinity,Infinity}]
]
Plot[f[t],{t,tmin,tmax}];
NIntegrate[ NIntegrate[ x+y, {x,0,1} ], {y,0,1} ] 简单
NIntegrate[x+y,{x,0,1},{y,0,1}];
Solve[ x + NIntegrate[x+y,{y,0,1}] == 1, x ] 不好
定义:
functmp1[x_]:=Block[{y},
-1+x + NIntegrate[ x+y, {
R******y
发帖数: 651
2
来自主题: Mathematics版 - mathematica 积分问题 (转载)
【 以下文字转载自 Physics 讨论区 】
发信人: RICIIkey (昵称太短!), 信区: Physics
标 题: mathematica 积分问题
发信站: BBS 未名空间站 (Sat Nov 8 18:53:40 2008)
f[x_, y_, z_] := x^2 + y^2 + z^2;
g[x_, y_] := NIntegrate[f[x, y, z], {z, 0, 1}]
NIntegrate[g[x, y]^2 + g[x, y]^(1/2), {x, 0, 1}, {y, 0, 1}]
出错信息是
NIntegrate::inum: Integrand f[x, y, z] is not numerical at {z} = {0.5`}
我只要NIntegrate 的结果,Integrate 是没问题的。
R******y
发帖数: 651
3
来自主题: Physics版 - mathematica 积分问题
f[x_, y_, z_] := x^2 + y^2 + z^2;
g[x_, y_] := NIntegrate[f[x, y, z], {z, 0, 1}]
NIntegrate[g[x, y]^2 + g[x, y]^(1/2), {x, 0, 1}, {y, 0, 1}]
出错信息是
NIntegrate::inum: Integrand f[x, y, z] is not numerical at {z} = {0.5`}
我只要NIntegrate 的结果,Integrate 是没问题的。
x***u
发帖数: 6421
4
来自主题: Physics版 - mathematica 积分问题
In[1]:= f[x_, y_, z_] := x^2 + y^2 + z^2;
g[x_, y_] := NIntegrate[f[x, y, z], {z, 0, 1}];
NIntegrate[g[x, y]^2 + g[x, y]^0.5, {x, 0, 1}, {y, 0, 1}]
During evaluation of In[1]:= NIntegrate::inumr: The integrand \
x^2+y^2+z^2 has evaluated to non-numerical values for all sampling \
points in the region with boundaries {{0,1}}. >>
During evaluation of In[1]:= NIntegrate::inumr: The integrand \
x^2+y^2+z^2 has evaluated to non-numerical values for all sampling \
points in the region with boundaries
S*********g
发帖数: 5298
5
来自主题: Physics版 - Numerical Integration in Mathematica
Use NIntegrate and put the NIntegrate of G in Hold
k**l
发帖数: 2966
6
如果你学过留数定理,
http://en.wikipedia.org/wiki/Residue_theorem
看看这个就可以仿着求出来了
methematica用解析 Integrate(不是数值NIntegrate)算出来应该和留数定理一样,
是解析解
q***t
发帖数: 3
7
来自主题: Computation版 - mathematica 提问 "integrand not numerical"
列位大虾有用mathematica的吧?

请教一个问题。希望绘出一个曲线 f(t);其定义为一个积分:

\int g(x,y,t) dx
f(t) = \int ------------------ dy (1)
\int h(x,y,t) dx

g(x,y,t)和h(x,y,t)都是给定的函数。里外的三个积分限都是
(-Infinity,Infinity),一般是没有解析表达的。如果用

Integrate[ g(x,y,t), x ]
f(t) = NIntegrate[ --------------------------, y ] (2)
Integrate[ h(x,y,t), x ]

计算就太慢了。原因是 mathematica 试图简化 Integrate[ g(x,y,t), x ] 未果。
可是改成数值积分:

S*********g
发帖数: 5298
8
来自主题: Physics版 - mathematica 积分问题
No, that's not what he wanted.
Because in the real life problem, it could be impossible
for Mathematica to do an Integrate for the given f and g
The solution is:
NIntegrate[Hold[g[x,y]^2+Sqrt[g[x,y] ] ],{x,0,1},{y,0,1}]
dm
发帖数: 92
9
来自主题: Physics版 - mathematica 积分问题
There seems to be a convention change since v6?
f[x_?NumberQ, y_?NumberQ, z_?NumberQ] := x^2 + y^2 + z^2;
g[x_?NumberQ, y_?NumberQ] := NIntegrate[f[x, y, z], {z, 0, 1}]
R******y
发帖数: 651
10
比如求f[x,y]=x^2+y^3, x [-1,1], y 是[0,x]
NIntegrate[f[x,y],{y,0,x},{x,-1,1}] 就不行。
S*********g
发帖数: 5298
11
NIntegrate[f[x,y],{x,-1,1},{y,0,x}]
S*********g
发帖数: 5298
12
来自主题: Physics版 - Numerical Integration in Mathematica
Hold[NIntegrate[g[x],{x,0,b}]]
(共0页)