由买买提看人间百态

topics

全部话题 - 话题: regressive
1 2 3 4 5 6 7 8 9 10 下页 末页 (共10页)
p********a
发帖数: 5352
1
☆─────────────────────────────────────☆
cici (full house) 于 (Mon Nov 7 08:33:47 2011, 美东) 提到:
对于logistic regression
log(pi/1-pi)=b0+b1x1+b2x2
我现在已知independent variables和response variable{log(pi/1-pi)}
我要怎么做才能把参数b0,b1,b2 fit出来?非常感谢
☆─────────────────────────────────────☆
sleephare (I+don't+know.) 于 (Mon Nov 7 14:16:38 2011, 美东) 提到:
SAS, R?

☆─────────────────────────────────────☆
cici (full house) 于 (Mon Nov 7 16:19:05 2011, 美东) 提到:
R,thanks
☆────────────────────────────────────... 阅读全帖
d*******o
发帖数: 493
2
来自主题: Statistics版 - regression problem - go confused
This is a multiple regression with 2 predictors and such things happen often
.
You can follow three steps to resolve such a multiple regression by partial
regressions.
1)regress Z on A, by which you have Z-hat expression
2)regress B on A, by which you have B-hat expression
3)regress Z minus Z-hat on B minus B-hat. Plug in 1) and 2) then you have
the same result from the first multiple regression.
A*******s
发帖数: 3942
3
hey, look at my post:
if data are DENSY near boundaries...
which suggest some truncated/censored nature behind what u see. that is the
origin of latent variable models for bounded outcome.
if u don't buy it, try my example after u delete all the 0 and 1 Y, and
print out the residual plot.
or u can just simply google beta regression. Here is some explanation about
the need of beta regression:;
How should one perform a regression analysis in which the dependent variable
(or response
variable), y, ... 阅读全帖
t********m
发帖数: 939
4
来自主题: Statistics版 - 该用cox regression model还是gee model?
Obs ID MONTHS SEQ EVENT DAYS AGE BMI
1 1 0 1 0 0.001 40 27.39999962
2 1 12 2 0 411 41 26.5
3 1 24 3 0 778 42 26.29999924
4 1 36 4 0 1169 43 26.20000076
5 1 48 5 0 1504 44 26
6 1 60 6 0 1911 45 26.39999962
7 1 72 7 0 2225 46 26.10000038
8 1 84 8 0 2612 47 27.60000038
9 2 0 1 0 0.001 50 24.7... 阅读全帖
d******e
发帖数: 7844
5
来自主题: Statistics版 - 问一个linear regression 的弱问题。
我认为是Linear in predictors.
如果认为predictor不包含高阶项,那Polynomial Regression就可以被看做是
Nonlinear Regression。
如果认为predictor含高阶项,那Polynomial Regression就可以被解释为Linear
Regression。
个人觉得说到底还是文字游戏,这种简单的polynomial regression本质上还是
parametric regression。
x****h
发帖数: 78
6
来自主题: JobHunting版 - 问一道multiple linear regression的题
【 以下文字转载自 Statistics 讨论区 】
发信人: xyzhhh (xiaoyuanzi), 信区: Statistics
标 题: 问一道multiple linear regression的题
发信站: BBS 未名空间站 (Wed Nov 30 22:11:20 2011, 美东)
Simple linear regression S1: Y~x(1) (i.e., Y=a1*x(1)+a0); R2 (coefficient of
determination) = 0.01 ;
Simple linear regression S2: Y~x(2) (i.e., Y=b1*x(2)+b0); R2 (coefficient of
determination) = 0.02 ;
Then multiple regression M3:Y~x(1) and x(2)(i.e., Y=c2*x(2)+c1*x(1)+c0); wha
t is the min and max of the R2 for this regression?
thanks!
D***r
发帖数: 7511
7
来自主题: CS版 - regression analysis
如果要做regression,无非那么几种常用的方法
像linear regression, ridge regression,logistic regression
房价这种东西本来就不要求很精确,可能一般的linear regression就够了
用least square error
你的训练数据有多大呢?有多少样本,多大维度?
D***r
发帖数: 7511
8
来自主题: CS版 - regression analysis
如果要做regression,无非那么几种常用的方法
像linear regression, ridge regression,logistic regression
房价这种东西本来就不要求很精确,可能一般的linear regression就够了
用least square error
你的训练数据有多大呢?有多少样本,多大维度?
g*******a
发帖数: 443
9
Graham regresses variable Y on four independent variables: X1, X2, X3 and
X4. He obtains the following output:
图片1
Graham also tries a regression of Y against X1 and obtains the following
results:
图片2
Answer the following questions:
a) Why do you think there is not a big difference between the R-Square of
the two regressions?
b) Graham plots the variable X1 against the variable X2 and obtains the
following graph. What do you think this means? How does it affect the
regression?
图片3
c) ... 阅读全帖
m****t
发帖数: 754
10
请教大家一个问题:
survey data里有上千的受访者,每个受访者对应一个sampling weight variable。我
只知道在stratified random sample里, 每个受访者被选到的概率是不一样的。这个
sampling weight=1/probability.
那么在我用统计软件run linear regression的时候,这么sampling weight variable
怎么用啊?
(1)先run linear regression里其他的independent variables without the
sampling weight variable,得到 linear regression equation之后再加进这个
sampling weight variable。
(2)run linear regression的时候就加上这个sampling weight variable。
我感觉应该是(1),但不知道得到linear regression equation之后怎么加这个
sampling weight variable啊。... 阅读全帖
t***q
发帖数: 418
11
partial regression coefficient 的用途是什么?能放在线性模型里当prediction
coefficient 吗?看了几本书,好像也没讲算partial regression coefficient 的公
式,倒是讲了standardized partial regression coefficient 的公式。懂的人讲讲吧
!partial regression coefficient的公式,还有partial regression coefficient
的用途。多谢!
y**i
发帖数: 1050
12
来自主题: Statistics版 - 紧急求助一个LOGISTIC REGRESSION 问题.
紧急求助一个LOGISTIC REGRESSION 问题.
请问大家一个问题,我打算做一个LOGISTIC REGRESSION MODEL, Y=1 或者0
但是我的Y=1只占 1%的比例,绝大部分是Y=0
可以用来做LOGISTIC REGRESSION吗?
我用SAS出来的结果非常差, GOODNESS OF FIT倒是可以,但是ROC 估计很差.
大家有什么办法吗, 对于这种SKEWED Y 有什么好的办法来做LOGISTIC REGRESSION不?
或者说其他的MODEL来PREDICT 0,1的吗?
在做LOGISTIC REGRESSION之前需要对数据做什么处理吗? 比如需要NORMALIZED DATA
吗,我的X, 有的X是1.0-2.0的LEVEL,有的是1000,2000,3000, 不知道是不是可以呢? 因
为我用SAS PROC LOGISTIC STEPWISE SELECTION X,不知道需要提前对数据做如何处理
呢?
谢谢
g****t
发帖数: 31659
13
来自主题: Mathematics版 - 关于多个regression的问题.
这就是linear regression
Y1=a1X1+a2X2+..a5X5+0*b2
Y2=0*a4+0*a5........

比如第一个regression有5个coefficient.
Y1=a1X1+a2X2+a3X3+a4X4+a5X5.
第二个regresion 有4个coefficient.
Y2=b1Z1+b2Z2+b3Z3+b4Z4.
X 和Z 之间没啥关系. 是不同的变量.
前提条件是a1=b1, a2=b3, a3=b4. 然后做regression, 求a1, a2, a3, a4, a5 和 b1,
b2, b3 和 b4. 当然结果应该a1=b1, a2=b3, a3=b4.
这种怎么求? 是叫啥regression?
谢谢.
w********h
发帖数: 17
14
来自主题: Science版 - Logit和Logistic Regression
关于logit和Logistic Regression:
对于binary data的regression, 最常用的就是Ronna写的logistic regression model.
那就是dependent variable Y 和independent variable X 之间的关系是:
logit{P(Y=1)}=log{p/(1-p)}=\beta_0+\beta_1 X.
人们之所以用logit link,是因为其拥有其它link无与伦比的优越性:它使modelz中\beta_1
具有odds ratio的解释.odds ratio可是个好东西,为什么呢?是因为无论在prosepective
study还是在retrospective study中,它都可以用来measure association.这也是logistic
regression model的优越性所在.
f********e
发帖数: 34
15
You fit a binary logistic regression to classify Z=1 or Z=0. You get the
best-fit regression coefficients Beta_0, Beta_1, Beta_2, and Beta_3 such
that log( P(Z=1)/P(Z=0) )= Beta_0 + Beta_1*A + Beta_2*B + Beta_3*C and the
likelihood of the training set is maximized. A, B, and C are continuous
variables.
Q1: Suppose you are training your logistic regression as described above.
You fit your logistic regression model on the training set and test it on
the same data set. Your accuracy rate is 98%. Yo
s******d
发帖数: 538
16
问一个关于linear regression的问题,大家不要笑我。这个问题在我心里有一段时间
了,但一直未找到答案,恳请大家帮忙。就是,linear regression里有Rsquare,如果
Rquare大于一个数,好像是0。7,那么这个model就fit data well。但是linear
regression也有ANOVA和F test, 如果F test 的P-value 很小,例如小于0。05,那么
这个model就fit data well。 但如果有这种情形该怎么解释,就是Rsquare比较大,例
如大于0。9,但F test却不significant,i.e.F test的P-value 比较大,例如大于0。
5。long story short, 就是在linear regression 中,如果根据Rqsuare,这个model
fit data well,但如果根据F test,这个model又不fit data well,好像有矛盾,请
问这种情形真的会发生吗?真的发生了又该怎么解释?如果永远不会发生,其理由和根
据又是什么?多谢答复!
s*******e
发帖数: 226
17
The reviewer asked us to preform a two-stage regression, for example,
In the first stage, regress Y1 on a series of X1 (firm characteristic
variables). Then in the second stage, use the residual got from the first
stage (let us say Y2) to regresson on a series of time-series variables (X2).
We wonder why we cannot just regress Y1 on X1 and X2 in a single regression.
We know the statistical results will be slightly different, but is there
any material difference between the two-stage method versu... 阅读全帖
n******t
发帖数: 189
18
来自主题: Statistics版 - a regression model test issue
I did not learn any regression course before,so I want your help. Thanks.
suppose a person wants to make a decision (accpet or reject) when an item
comes to him.
Current model is only a logistic regression model. We know person's decision
is based on a lot of variables such as A1, A2....(nearly 200 in total)
Then the final acceptance probability is the result of logistic regression
model.
Currently, we have real data of person's decision, we calculate the
acceptance probability according to this... 阅读全帖
x****h
发帖数: 78
19
来自主题: Statistics版 - 问一道multiple linear regression的题
Simple linear regression S1: Y~x(1) (i.e., Y=a1*x(1)+a0); R2 (coefficient of
determination) = 0.01 ;
Simple linear regression S2: Y~x(2) (i.e., Y=b1*x(2)+b0); R2 (coefficient of
determination) = 0.02 ;
Then multiple regression M3:Y~x(1) and x(2)(i.e., Y=c2*x(2)+c1*x(1)+c0); wha
t is the min and max of the R2 for this regression?
thanks!
o********c
发帖数: 1
20
来自主题: Statistics版 - 遇到这样的regression问题
背景:非统计专业自然科学博士,面data analyst/business analyst职位
如果你遇到一个sample我们要建模,有非常多的variable,假设你不知道哪一个和你的
模型有关,怎么选择哪些variable放进你的regression模型,问题是基于online
consumer behavior的方向。
当时我就晕菜了,我只做过简单的linear regression,顶多5个变量,我就把所有变量
都试一遍,看每个变量的p value决定哪一个放在regression里,可是网上用户的数据
非常多,每个都试一遍应该不现实吧。
我目前的感觉好像是用stepwise regression,不过我也不是很清楚原理,来这里请教
一下
真心请教统计学人士,这种情况下怎么选变量。
w******e
发帖数: 142
21
http://www.amazon.com/Applied-Smoothing-Techniques-Data-Analysi
Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-
Plus Illustrations
英国人写得,里面是s plus的code,他现在有相关的r package,差不多所有的例子都可
以直接在R运行。虽然有点老,但是该讲的都讲过一点。如果时间不多,这本书就可以
给你大致的概念和如何使用。
http://www.amazon.com/Introduction-Nonparametric-Regression-Pro
Introduction to Nonparametric Regression
日本人写得,以前做project的时候翻过里面的东西,公式推导比较多,如果你要自己
从头写程序还是有用的。
http://www.amazon.com/Semiparametric-Regression-Statistical-Pro
Semiparametric R... 阅读全帖
j******a
发帖数: 104
22
来自主题: Statistics版 - 请问一个Regression的问题
谢谢楼上回复, 我把我想解决的问题先写出来, 看看是否可以做regression或是有更
好的解决方法。。。
我现在有A,B组客人,知道每组客人可以带来多少revenue,也就是说我知道每组有多少
客人(x),和每个组revenue/customer(b),每天记录, 一共记录比如一个月,并且知
道两组加起来一共的revenue(y); 目的:想通过这两个变量太预测整个两组加起来总共
带来的的revenue(y_hat)
我理解是 y = b1*x1 + b2*x2 + e, 然后想把这个做成regression
但是我做了regression, 首先b1 和 b2给出来的estimator,和我真正有的revnue/
customer差很远 (感觉上面那个模型没有intercept, 但是R给我结果是有intercept)
,并且estimated b出现负值, 直接导致我的predicted value也变成负值, 请问我这
是哪里做错了吗? 还是不可以这么做regression, 有什么其他方法可以predict吗?
谢谢
f***l
发帖数: 117
23
使用MSE等指标的一个问题是很难判断所得到的数值是太大或者太小,不像R^2这样的指
标那么直观。
但是如果对test set再做regression,得到的regression equation肯定和training
set的有所区别,这时候应该怎么统一我也不清楚。
另外关于模型性能的问题是,如果将test set的数值代入从training set中得到的
regression equation来做prediction,因为regression model实际是mean的
prediction,所以实际一一对应的预测效果要差的多,不知道这个怎么解决.
m*n
发帖数: 695
24
来自主题: Statistics版 - 请教: exact logistic regression
看到文献除了做一般的logistic regression , 还做了exact logistic regression
。 原因之一是样本量小, 还有其他的原因吗?
因素A ,因素B 单独logistic regression 没有统计学意义, 但是”因素A X因素B
interaction” 的 exact logistic regression 就有统计学意义。文献是SAS做的,
我只有SPSS。象这种思想如何在spss 中实现呢?我的数据和文献的相似。 也想用这
种分析, 看两个因素联合起来是否能增加患病的危险。
请前辈们指点!
谢谢!!!
s********1
发帖数: 235
25
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=923635
大家有谁懂adaptive regression参数估计的?我有个问题想问问。多谢。在上面那篇
文章的第四页,有一个adaptive regression model,我想问一下诸位,有谁懂adaptive
regression model parameter estimation的,该方法怎样运用到上面链接里的文章的
第四页的那样的adaptive regression model 里?r 里有什么好的相应package ?code
大致怎样?多谢!
v*******e
发帖数: 11604
26

都是regression。logistic regression和linear regression都归类为generalized
linear regression,这是它们相同之处。
不同之处自然是link function和responsive variable variation不同。
h****i
发帖数: 5
27
来自主题: Statistics版 - question on linear regression
I tried to use linear regression to fit a line to X/Y (two sets of data on
different scales ) and use the generated R square (R2) to see if there is
strong/weak correlation between them. The tooling I used is Excel's Data
Analysis Toolpak.
One colleague insists that I must normalize the 2 datasets and plot them on
an axis at the same scale x/y, otherwise the R2 analysis is invalid. However
, the references I read online (such as the following ones) do not require
to normalize the X/Y data sets t... 阅读全帖
t***a
发帖数: 68
28
来自主题: Mathematics版 - 关于多个regression的问题.
比如第一个regression有5个coefficient.
Y1=a1X1+a2X2+a3X3+a4X4+a5X5.
第二个regresion 有4个coefficient.
Y2=b1Z1+b2Z2+b3Z3+b4Z4.
X 和Z 之间没啥关系. 是不同的变量.
前提条件是a1=b1, a2=b3, a3=b4. 然后做regression, 求a1, a2, a3, a4, a5 和 b1,
b2, b3 和 b4. 当然结果应该a1=b1, a2=b3, a3=b4.
这种怎么求? 是叫啥regression?
谢谢.
m******t
发帖数: 273
29
【 以下文字转载自 Statistics 讨论区 】
发信人: myregmit (myregmit), 信区: Statistics
标 题: data prediction by regression or better ways
发信站: BBS 未名空间站 (Fri Mar 7 17:24:34 2014, 美东)
I am working on data prediction.
Given data of a random variable X and Y, find out how to predict Y by X.
I know how to do it by linear regression, y = k x + b .
But, here, x is always non-negative and y is required to be non-negative.
Sometimes, b is not non-negative so that y < 0.
How to assure that b > 0 and also minimize the pre... 阅读全帖
m******t
发帖数: 273
30
【 以下文字转载自 Statistics 讨论区 】
发信人: myregmit (myregmit), 信区: Statistics
标 题: data prediction by regression or better ways
发信站: BBS 未名空间站 (Fri Mar 7 17:24:34 2014, 美东)
I am working on data prediction.
Given data of a random variable X and Y, find out how to predict Y by X.
I know how to do it by linear regression, y = k x + b .
But, here, x is always non-negative and y is required to be non-negative.
Sometimes, b is not non-negative so that y < 0.
How to assure that b > 0 and also minimize the pre... 阅读全帖
q*******l
发帖数: 36
31
问题:
ridge regression 里面penalization那部分如果将L2 norm 换成L1 norm,那会倾向于
选择parameters更多还是更少的模型?
不是很明白这个问题是什么意思,大家帮忙看一下。
====
附:
电面,GETCO 伦敦quant trader
估计自己是没什么戏了,给需要的人参考一下吧。
面试过程非常简洁,1v1。对方法国EP出来的quant,他先自我介绍两句,我自我介绍两
句,然后直接开始问问题。
Q:GETCO 有很多products,怎样用这些作为predictor建一个revenue的模型。
A:Linear model, blabla...
Q: 你还能想到什么方法
A:nonlinear model, neural network..?
Q: predictor怎么多,会出现什么问题?
A:1.computational cost 2.不同的predictors correlated
Q: What's the name of it?
A: (ft..."name"这个单词以为是个没听过的专业术语呢,叫他重复了2遍...)
mul... 阅读全帖
m******t
发帖数: 273
32
【 以下文字转载自 Statistics 讨论区 】
发信人: myregmit (myregmit), 信区: Statistics
标 题: data prediction by regression or better ways
发信站: BBS 未名空间站 (Fri Mar 7 17:24:34 2014, 美东)
I am working on data prediction.
Given data of a random variable X and Y, find out how to predict Y by X.
I know how to do it by linear regression, y = k x + b .
But, here, x is always non-negative and y is required to be non-negative.
Sometimes, b is not non-negative so that y < 0.
How to assure that b > 0 and also minimize the pre... 阅读全帖
m******t
发帖数: 273
33
【 以下文字转载自 Statistics 讨论区 】
发信人: myregmit (myregmit), 信区: Statistics
标 题: data prediction by regression or better ways
发信站: BBS 未名空间站 (Fri Mar 7 17:24:34 2014, 美东)
I am working on data prediction.
Given data of a random variable X and Y, find out how to predict Y by X.
I know how to do it by linear regression, y = k x + b .
But, here, x is always non-negative and y is required to be non-negative.
Sometimes, b is not non-negative so that y < 0.
How to assure that b > 0 and also minimize the pre... 阅读全帖
d**********l
发帖数: 183
34
如果covariate里有time series 的regressor, response也是time series。这样的情
况下做linear regression是不是有些复杂?就我目前的理解是如果x和y都是
stationary的过程,或者如果x和y是cointegrated的,是可以直接做linear
regression只不过error的pattern 是stochastic的。
请问牛人们我的理解对吗?
如果y是stationary, x是i(1)那么是不是要把x difference 一次再对y 和diff(x)
做regression呢?
谢谢大虾的回答。
o******6
发帖数: 538
35
来自主题: Statistics版 - How to the macro regression with if?
%macro regression(dep=,indep=);
proc reg data=data1;
model &dep=&indep;
run;
%mend;
%regression(dep=y,indep=x);
%regression(dep=z,indep=x y);
h******a
发帖数: 198
36
一般的情况下,linear regression都认为X是观测到的数据,不是随机变量,而e是一
个随机变量,E(e)=0,var(e)=sigma^2.自然X与e独立。
为什么要这样设定呢?我想regression的目的主要在于
1.寻找数据中的规律,
2.做出预测。
如果e,也就是随机的误差依赖于观测值X,那以上两个目的就很难完全达到。比如说,
如果e依赖X,那我在预测的时候还得考虑X的大小,使问题更复杂了。
另外OLS是不依赖于distribution的。linear regression基本假设是
1.e是一个随机变量,E(e)=0,var(e)=sigma^2
2.corr(e(i),e(j))=0
再假设e服从normal,为的是令e(i)和e(j)独立,与OLS无关。
g**********y
发帖数: 423
37
来自主题: Statistics版 - How to rank variables in regression?
I am doing regression on microarray data - X.
X is the gene expression level derived from rma normalization.
Suppose there are p independent variables (genes) and n samples (
observations)
and regression by Y = X'beta. (Y is response variables, or phenotype)
Can we state that the importance of each gene is determined by its
corresponding coeff beta?
should X be standardized to mean zero variance one for each gene across all
samples? Denote it as Z. Is it better to performan regression on Z,
Y=Z'
a**********9
发帖数: 491
38
请教:Multivariable regression 中一个变量的coefficient t-statistics
insignificant 怎么办?是不是这个变量取系数等于0?但是它可能只是不是95%
confidence,而可能是90%.该怎么办呢?是这个regression的变量选得有问题?是不是
随便2个就可以做regression 看看满足什么关系阿?
敬请高人指教,我很迷惑。
c*****s
发帖数: 180
39
来自主题: Statistics版 - 问个logistic regression的问题。
A professor mentioned that that is because of "conditional regression" or
some familiar words. When A and B put together in a regression, the result
will contradict with the regression by putting in just one (A or B).
I am sure there are some stats theories can explain it. But you may need to
ask some professionals.
p*****o
发帖数: 543
40
来自主题: Statistics版 - 关于ORDINAL LOGISTIC REGRESSION
两个问题想确认一下
1.ORDINAL LOGISTIC REGRESSION中的应变量应该不需要是等间隔的吧,比如
Y= 1, 3, 9这三个值,也可以直接做ORDINAL LOGISTIC REGRESSION吧。不需要重新将
他们变成Y=1,2,3吧?
2.ORDINAL LOGISTIC REGRESSION中,Y可以是从0开始么?比如Y=01,2,3?或者Y可以从
负值开始么?比如Y=-1,0,1。这是不是跟Y=1,2,3的结果是一样的??
x***i
发帖数: 135
41
来自主题: Statistics版 - HELP--Logistic regression in R
要用R做很多个LOGISTIC REGRESSION, STATUS (Y)=rs1 (X), status=rs2....差不多
要做100多个这样的,y都是status,x不一样,从column7 到column 130,每个column
都是一个变量,都要跟status做个logistic regression,一个个写太麻烦了,请问R里
有什么比较简单的code能用吗?能用column7:column130之类的吗?
另外,每个logistic regression都会有很多output,如果我只想要pvalue,应该用什
么code呢?谢谢了
s**f
发帖数: 365
42
来自主题: Statistics版 - 请教一个ordinal regression的问题!
请问,用SAS的proc logistic做ordinal regression,dependent variable有几个level。proc logistic是默认这几个level是linear(univariate的regression)的关系,还是nonlinear(multivariate的regression)的关系?
我今天找SAS的help里面找了半天也没找到,请问哪里有解释?
知道的大牛请一定帮我一下!太感谢了!!!
M****e
发帖数: 178
43
来自主题: Statistics版 - 菜鸟问个logistic regression的问题
I think this is kind of a typical case for logistic regression with binomial
responses. If you reduce the data to percentage, in some sense you are
losing information. For example, in one population, n=200, n(female)=100,
you have percentage of 0.5; in another population, n=4, n(female)=2, you
still get percentage of 0.5. But apparently you have more certainty that the
first population has a "real" female percentage of 0.5. The data of these
two populations will add different "weights" to logi... 阅读全帖
F****n
发帖数: 3271
44
来自主题: Statistics版 - Multinomial Regression
I have a dependent variable with 2+ categories and I know how to run
multinomial regression with it. However, in multinomial regression you need
to pick a reference category and let other categories compare to it. You don
't get a pairwise comparison. An intuitive solution is to alter the
reference category and run the regression multiple times. However, I am not
quite sure about the validity of this approach. For example, should I worry
about family-wise error? How can I address that? And is th... 阅读全帖
A*******s
发帖数: 3942
45
i don't know if it is related to time series.
my understanding is that this two stage regression works like one step
regression on X1, and the part of X2 orthogonal to X1.

X2).
regression.
one?
q**j
发帖数: 10612
46
来自主题: Statistics版 - R里面regression 变量选择的package?
终于到了这一步了。请大家推荐一下各种regression variable selection tools。比如
正常regression里面哪个比较好?
另外在ridge, lasso,LAR下面哪个好。还有什么glmnet的?我全部尝试一边,可以汇报
实际效果。
另外问一下,如果用lasso来选择变量,但是用Ordinary least square 估计系数和cov
ariance matrix,这样做合理吗?我要estimate system of equations,不知道lasso这
样的有现成package给用么?普通regression有package systemfit干这个。多谢了。
s*********2
发帖数: 106
47
我先前理解错LZ的意思了,他是不是说把一个dataset分成两部分做regression。这两
部分分别做regression和用整个dataset做regression,coefficient estimates之间的
关系?
s*r
发帖数: 2757
48
那个conditional probability是我信口开河
你说的这个exact logistic regression其实是Exact Conditional Logistic
Regression,exact只是实现的方法, conditional才是统计的思想
做conditional 的原理在于认为某些parameter是Nuisance parameter,和自己要
estimate的parameter无关,conditional logistic regression的根本就是condition
out the nuisance parameters
e******g
发帖数: 25
49
来自主题: Statistics版 - Regression tree or Multiple linear regression
如果dependant variable 是continous variable,independant variables 包含了许
多categorical variables, 这样的情况是不是用regression tree 要比multiple
linear regression 好呢?
各位前辈,能否讲讲两种方法的利弊和各自的适用条件呢?
h******u
发帖数: 323
50
来自主题: Statistics版 - Logistic Regression应该看哪本书?
请版上的大牛推荐,入门级的regression的书,包括logistic regression的。主要是
为了一个统计类的面试,题目应该不会很难,但是本身不是学统计的,所以对
regression不是很了解。
先拜谢了~
1 2 3 4 5 6 7 8 9 10 下页 末页 (共10页)