由买买提看人间百态

topics

全部话题 - 话题: wolfram
首页 上页 1 2 3 4 5 6 (共6页)
s******h
发帖数: 539
1
来自主题: Mathematics版 - exp( x^2)dx integral
1. It's not the same as normal density integration;
2. In general, it's about the error function on complex plane;
http://en.wikipedia.org/wiki/Error_function
3. Check out this link
http://integrals.wolfram.com/index.jsp?expr=Exp[x^2]&random=false
4. Numerically it equals 1.46265 ( You can even use Taylor expansion to
get this easily!)
h******p
发帖数: 113
2
来自主题: Mathematics版 - 请教:3维数据拟合(包子贴)
我觉得可以用Mathematica的FindFit函数,
http://reference.wolfram.com/mathematica/ref/FindFit.html?q=FindFit&lang=en
在Method中用LevenbergMarquardt或者NMinimize效果比较好。
如果参数多的话,可以先估算一些值,然后逐步refine.
另外就是好像有时1stopt 软件更强一些,不过Mathematica也已经不错了,比IGOR Pro
要好一些。
不对之处,请指教。
f*********g
发帖数: 632
3
Equations of higher degree
Some of the ideas described here can be generalized to equations of higher
degree. The basic ideas for solving the sextic using Klein's approach to the
quintic were worked out around 1900. For algebraic equations beyond the
sextic, the roots can be expressed in terms of hypergeometric functions in
several variables or in terms of Siegel modular functions.
http://library.wolfram.com/examples/quintic/main.html

示(Klein 和Poincare的结果)(应该是自守函数,如理解有误,请千万不吝指教)
f*********g
发帖数: 632
4
The Siegel theta function is implemented in Mathematica as SiegelTheta[Omega
, s].
This function was investigated by many of the luminaries of nineteenth
century mathematics, Riemann, Weierstrass, Frobenius, Poincaré. Umemura has
expressed the roots of an arbitrary polynomial in terms of Siegel theta
functions (Mumford 1984).
http://mathworld.wolfram.com/SiegelThetaFunction.html

the
l***o
发帖数: 7937
5
来自主题: Mathematics版 - 一道题
解答可借助Kronecker's Approximation Theorem.
http://mathworld.wolfram.com/KroneckersApproximationTheorem.html
s*********l
发帖数: 103
6
The result in the book is correct.
It seems a special case of Weingarten Equations.
http://mathworld.wolfram.com/WeingartenEquations.html
Make sure your computation of g^cv is correct.
(is it the inverse of the matrix form of the first
fundamental form?)
e*******s
发帖数: 1927
7
来自主题: Mathematics版 - 有人用过wolfram alpha吗
试了一试,还挺炫的
c******m
发帖数: 599
8
计算器不行, iphone上有著名的wolfram的 alpha app
p*********8
发帖数: 1039
9
我平时做作业是在网上用的这个wolfram的alpha app, 如果没有其他办法,那就麻烦了
t******g
发帖数: 1136
10
来自主题: Mathematics版 - 这儿有用Mathematica的吗?
我输入:
Get["/path/to/Polyhedra.m"]
输出:
$Failed
我输入:
FileNames["*.m",$Path,Infinity]
出来一个很长的list, 的确有这个文件:
"C:\Program Files\Wolfram \
Research\Mathematica\7.0\AddOns\LegacyPackages\Graphics\\
Polyhedra.m",
是不是我装mathematica 没有装对?或者应该修改当前目录?
该怎么修改当前目录呢?
谢谢指点。
S*********k
发帖数: 507
11
来自主题: Mathematics版 - 这儿有用Mathematica的吗?
看来楼主 manual/tutorial 一类的东西看的较少。
/path/to/
是要让你换成只想 Polyhedra.m 的路径。不过楼下的说的对
PolyhedraData 直接可以用。
http://reference.wolfram.com/mathematica/ref/PolyhedronData.htm
a***n
发帖数: 3633
12
来自主题: Mathematics版 - 求Chebyshev 多项式插值的代码
你需要的是如何生产Chebyshev多项式的系数是吧
http://mathworld.wolfram.com/ChebyshevApproximationFormula.html
原理在这里。
你需要在某些特殊点计算未知函数的值,接着再加权求和就是相应的系数。

g****t
发帖数: 31659
13
来自主题: Mathematics版 - 求Chebyshev 多项式插值的代码
google这个文章:
Barycentric Lagrange Interpolation
如果我没记错,这个文章里面有一个几行的很牛B的代码。

你需要的是如何生产Chebyshev多项式的系数是吧
http://mathworld.wolfram.com/ChebyshevApproximationFormula.html
原理在这里。
你需要在某些特殊点计算未知函数的值,接着再加权求和就是相应的系数。
w**a
发帖数: 1024
l********e
发帖数: 3632
15
来自主题: Mathematics版 - 線上HTML5數學函數描圖器
wolfram alpha is much useful
m*****h
发帖数: 2292
B**e
发帖数: 60
17
来自主题: Mathematics版 - graph question: what is "genus" ?
You mean n(n-1)/2 edges, right, which is the number of edges a complete
graph with n nodes can have. For the genus of a complete graph, please
follow the link below.
http://mathworld.wolfram.com/GraphGenus.html

a
e*******y
发帖数: 73
18
来自主题: Mathematics版 - 外行求问,关于素数分布的情况
n!+2, n!+3, ..., n!+n 连续自然数都不是素数,n可任意大
从而;lim sup(p_{n+1}-p_n)=infty
哈代利特伍德有猜想 对于任意的整数k
x-y=2k, 有无穷多对不同的素数解。 (k=1就是孪生素数猜想)
老张证明了k小于35000000, 是对的
其实猜想很强, 解的个数有渐近公式
c(k) x/(log^2 x)
http://mathworld.wolfram.com/k-TupleConjecture.html

p
s*****c
发帖数: 753
19
来自主题: Mathematics版 - 大家看看我错在哪里?
Learn some elementry school math:
http://mathworld.wolfram.com/SquareRoot.html

-4
d******0
发帖数: 471
20
来自主题: Mathematics版 - 关于老张的谣言
Order of importance:
Fields medal.
Wolf Prize
Steele Prize
Bôcher Prize,
Cole Prizes
Fulkerson Prize
http://mathworld.wolfram.com/MathematicsPrizes.html
The most prestigious mathematical award is known as the Fields medal. In
rough order of importance, other awards are the $100000 Wolf Prize of the
Wolf Foundation of Israel, the Leroy P. Steele Prize of the American
Mathematical Society, followed by the Bôcher Prize, Cole Prizes in
algebra and number theory, and the Delbert Ray Fulkers... 阅读全帖
o***m
发帖数: 52
k**l
发帖数: 2966
22
来自主题: Physics版 - 请教:什么是Coulomb energy?
google 第二行, 这个词估计是学化学或工程的人发明的
http://scienceworld.wolfram.com/physics/CoulombEnergy.html
The potential energy between two charged bodies.
P*******t
发帖数: 202
z****y
发帖数: 1550
24
这个还用群论,不就是欧拉角的变换矩阵吗
任何一本刚体力学的书上都有,
http://mathworld.wolfram.com/EulerAngles.html
B*********h
发帖数: 800
25
来自主题: Quant版 - [合集] 这道题怎么做?
☆─────────────────────────────────────☆
scarface (人生犹如一场电影) 于 (Thu Jan 11 20:54:55 2007) 提到:
2 cylinders each with radius 1 intersect at right angles and their centers a
lso intersect. What is the volume of the intersection?
☆─────────────────────────────────────☆
alexx (panda in love~八胖~饲羊员~水木十年) 于 (Thu Jan 11 21:01:47 2007) 提到:
http://mathworld.wolfram.com/SteinmetzSolid.html

a
☆─────────────────────────────────────☆
scarface (人生犹如一场电影) 于 (Thu Jan 11 21:08:49 2007) 提到:
sigh,看不懂
p*****k
发帖数: 318
26
来自主题: Quant版 - 如何用matlab构造如下矩阵
this is matrix direct product: "a" with {{1,1},{1,1}}.
i know mathematica has implementation:
http://mathworld.wolfram.com/KroneckerProduct.html
dunno matlab too well, but seems there is a similar command:
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/kron.html
p*****k
发帖数: 318
27
there is a 160-character code to calculate pi to 800 digits,
which utilizes the following series:
pi/2 = sum{from n=0 to infty} n!/(2n+1)!!
then of course every formula from the all-time great Ramanujan. see
http://en.wikipedia.org/wiki/Srinivasa_Ramanujan#Mathematical_achievements
some lists:
http://en.wikipedia.org/wiki/Pi
http://mathworld.wolfram.com/PiFormulas.html
m*****a
发帖数: 636
28
同感啊,呵呵。pcasnik强大的很。

there is a 160-character code to calculate pi to 800 digits,
which utilizes the following series:
pi/2 = sum{from n=0 to infty} n!/(2n+1)!!
then of course every formula from the all-time great Ramanujan. see
http://en.wikipedia.org/wiki/Srinivasa_Ramanujan#Mathematical_achievements
some lists:
http://en.wikipedia.org/wiki/Pi
http://mathworld.wolfram.com/PiFormulas.html
p*****k
发帖数: 318
29
来自主题: Quant版 - 请问个几何问题
http://mathworld.wolfram.com/SteinmetzSolid.html
16/3
besides the conventional calculus method, there is also an
elementary method popularized by Gardner.
p*****k
发帖数: 318
30
来自主题: Quant版 - 请教几个概率题
few minor additions to solutions by swordmans:
(1) tighter bounds could be got by using eq.(13) on this page:
http://mathworld.wolfram.com/Erfc.html
[ (x+sqrt{x^2+8/pi})/2, (x+sqrt{x^2+4})/2 )
(3) one wants the even n terms, which is hyperbolic cosine,
hence e^(-lambda)[e^(lambda)+e^(-lambda)]/2=p, which gives:
lambda = [log(2*p-1)]/2
p*****k
发帖数: 318
31
来自主题: Quant版 - 问两道题

seems to me it's related to Bessel functions. see e.g.,
http://mathworld.wolfram.com/BesselDifferentialEquation.html
Eq.(6)
with alpha=3/8, beta=i/2, gamma=2, and n=3/16
so the general solution is:
x(t)=t^(3/8)*[C1*I_{3/16}(t^2/2) + C2*I_{-3/16}(t^2/2)],
where I is the modified Bessel function
S*****H
发帖数: 90
32
来自主题: Quant版 - 一道老题
lower bound: (x+sqrt(x^2+8/pi))/2
upper bound: (x+sqrt(x^2+4))/2
See reference:
http://mathworld.wolfram.com/Erfc.html
p*****k
发帖数: 318
33
known as Frobenius coin exchange problem:
http://mathworld.wolfram.com/CoinProblem.html
there is Sylvester's theorem for two coin case but no closed-form for
three (or more coins) in general
p*****k
发帖数: 318
34
related to the so-called Stirling number of the second kind: 30!*S(50,30)
http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html
discussed here:
http://www.mitbbs.com/article_t/BrainTeaser/31166572.html
c**********e
发帖数: 2007
35
来自主题: Quant版 - 这个怎么证明?
X是一个标准正太分布。问E(X|X>x) 的上限和下限。
上限为(x+sqrt(x^2+4))/2。下限为(x+sqrt(x^2+8/pi))/2。怎么证明?
等价的问题是如何证明erfc()函数的上下界,见如下网页:
http://mathworld.wolfram.com/Erfc.html
望大侠赐教。
z****t
发帖数: 78
d****d
发帖数: 2919
37
恩。。。貌似红皮书上有类似的题,
问的是两个正态分布的变量相除是什么分布,答案是柯西分布。
不过头一次见到问两个相乘的。
http://mathworld.wolfram.com/NormalProductDistribution.html
d*****o
发帖数: 34
38

看了wolfram,感觉这种东西只有做research才会用的到啊。面试问到了的话,现算肯
定搞不定。另外wiki了一下,上面找到的结论都需要normal RV 是independent的。见
下面链接:
http://en.wikipedia.org/wiki/Normal_distribution#Combination_of
里面还有一些其他normal RV的combination的分布,但是都要求independent.
知道marginal distribution求joint distribution是挺困难的,ieee的那篇文章我只
能看到abstract,有没有全文?
l******i
发帖数: 1404
39
首先感谢楼主贡献,
如果可以的话,希望楼主最好能在帖子标题里加上问题的类别和关键词,
例如该帖名字可为:【Probability Problem】一道面试题
这样方便我们工作人员整理,谢谢啦。
我已经把标题改了。
关于楼主给的题目本身:
If X1 and X2 are two independent standard normal random variables,
then Z = X1·X2 follows the "product-normal" distribution
with density function fZ(z) = K0(|z|)/π,
where K0 is the modified Bessel function of the second kind.
See details here:
http://mathworld.wolfram.com/NormalProductDistribution.html
m****9
发帖数: 492
40
是在wolfram|alpha算的嘛?请教怎么用wa算cutoff?面试时候要算出这个实在有点困
难,我只能答道Pcutoff选B了。
H*******d
发帖数: 3
41
放入wolfram|alpha就会得到答案
O*********2
发帖数: 31
42
OK, Had a look at wolfram|alpha and it seems indeed numerical solution. It
has sth like “find roots of an equation using Newton's method”
t****n
发帖数: 56
43
来这里:http://mathworld.wolfram.com/Box-MullerTransformation.html
用Box Muller变换来仿真Gaussian分布!
k*****e
发帖数: 4
44
http://www.stephenwolfram.com/scrapbook/

1959: Born August 29 in London, England
1967-1972: Dragon School, Oxford
1968-1976: Won various prizes for English, science, math, etc


1972: Won scholarship to Eton College
1972-1976: King's Scholar, Eton College
1972-1973: Wrote unpublished book on particle physics
1973: Started programming Elliott 903C computer
1973: Did first scientific computer experiments
1974: Wrote first scientific paper
1975: Published first scientific paper
1975: Won schola
m***e
发帖数: 4
45
ft, 能上网却说没书,吾未见其明也!
look:
http://mathworld.wolfram.com/LeastSquaresFitting.html
h***o
发帖数: 539
46
来自主题: Science版 - 磁场计算问题求教
you also need to integrate in x direction (I's direction??)
if you did that...the assumption that current is distributed evenly in the
plate is another point to check....hoho
as for website...
http://scienceworld.wolfram.com/physics/Biot-SavartLaw.html
a****e
发帖数: 2064
47
来自主题: Science版 - Re: 到底什么是波?
那是你对波的定义.
http://scienceworld.wolfram.com/physics/SurfaceWave.html
一直在说表面波不同于声波. 是你非要把两者等同.
该走了, 没时间跟你吵了.




,



看到这样的波形:波线本身由与音叉频率相同的信号组成,而包络线(谢谢ARYA


x*******z
发帖数: 27
48
来自主题: Science版 - 哈哈,这本书可以在线看啦
Stephen Wolfram's A new kind of science
http://www.wolframscience.com/nksonline/
可以用程序抓下来慢慢看,爽
s******i
发帖数: 870
49
来自主题: Sociology版 - [合集] To XGG and Alvarado
Watson, James L (ed.) 1984. Class and Social Stratification in Post-
Revolution China. Cambridge
University Press.
Li, Yi. 2005. The Structure and Evolution of Chinese Social Stratification.
University Press of America.
Firebaugh, Glenn. 2003. The New Geography of Global Income Inequality.
Harvard University Press.
Origin
Eberhard, Wolfram. 1962. Social Mobility in Traditional China. Netherlands:
E.J. Brill.
Ho, Ping-Ti. 1976. The Ladder of Success in Imperial China: Aspects of
Social Mo
s******i
发帖数: 870
50
附录一:中国社会分层研究英文文献
Watson, James L (ed.) 1984. Class and Social Stratification in Post-
Revolution China. Cambridge University Press.
Li, Yi. 2005. The Structure and Evolution of Chinese Social Stratification.
University Press of America.
Firebaugh, Glenn. 2003. The New Geography of Global Income Inequality.
Harvard University Press.
Origin
Eberhard, Wolfram. 1962. Social Mobility in Traditional China. Netherlands:
E.J. Brill.
Ho, Ping-Ti. 1976. The Ladder of Success in Imperial China: As
首页 上页 1 2 3 4 5 6 (共6页)