x*****o 发帖数: 28 | 1 想问一下
给定一组线性不等式,譬如
a1 x + b1 y + c1 z > d1
a2 x + b2 y + c2 z > d2
...
ak x + bk y + ck z > dk
如上,有x,y,z三个未知量,其他ai, bi, ci, di是常数.
不需求解空间,只需判别上述不等式组是否有解.也即会否有contradiction.
是否有任何算法?谢谢!thanks a lot. | x*****o 发帖数: 28 | 2 忘了写.
所有不等式都可以写成>=.
线性规划会否overhead太大?有没有更快的方法.
直接决定是否有解.
呵呵,总觉得优化问题解法overhead会大点.
thanks | l*****g 发帖数: 49 | 3 This is 3 dimensional linear programming.
Linear programming in any FIXED dimension can be solved deterministically
in optimal linear time.
Look at any introductory book in Computational Geometry, or google
"low dimensional linear programming".
【在 x*****o 的大作中提到】 : 想问一下 : 给定一组线性不等式,譬如 : a1 x + b1 y + c1 z > d1 : a2 x + b2 y + c2 z > d2 : ... : ak x + bk y + ck z > dk : 如上,有x,y,z三个未知量,其他ai, bi, ci, di是常数. : 不需求解空间,只需判别上述不等式组是否有解.也即会否有contradiction. : 是否有任何算法?谢谢!thanks a lot.
| x*****o 发帖数: 28 | 4 Thanks. I use the linear programming in Matlab
by setting the objective function f = zero.
It works fine so far.
【在 l*****g 的大作中提到】 : This is 3 dimensional linear programming. : Linear programming in any FIXED dimension can be solved deterministically : in optimal linear time. : Look at any introductory book in Computational Geometry, or google : "low dimensional linear programming".
|
|