由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
CS版 - PROOF -- Re: EE challenge CS
相关主题
About testing of uniform distribution我的证明应该是正确的。Re: EE challenge CS
谁知道 一致有限性 英语怎么翻? 谢了.another attempt
请教一道老面试题,谢谢Guys, let us not give up
answer Re: EE challenge CSSTOP wasting time!Re: EE challenge CS
请问100% precision的machine learning算法框架Re: STOP wasting time!Re: EE challenge C
Re: 请教一个 graph connectivity 的问题问个network trace data的问题
EM 算法[合集] destro爱CS - episode 1 (EE chanllenge CS)
懂scale-invariant field或者图像处理的朋友请看进来 (转载)有人做Manifolds Learning么?
相关话题的讨论汇总
话题: curve话题: proof话题: point话题: trace话题: uniform
进入CS版参与讨论
1 (共1页)
c**********t
发帖数: 80
1
This proof is based upon melo's idea, and hopefully it is correct.
Let A be (0, 0) and B be (0, 1) on the X-Y plane. If we trace the curve
joining A and B
at a uniform speed, the curve can be represented as a vector-valued time
function
(x(t), y(t)). Without loss of generality, assume point (x(0), y(0)) be A, and
point (x(1), y(1)) be B. That is, it takes one second to trace the curve from
point A to B.
The uniform speed assumption and the fact that curve is continuous imply x(t)
and y(t) are bo
1 (共1页)
进入CS版参与讨论
相关主题
有人做Manifolds Learning么?请问100% precision的machine learning算法框架
请教选课Re: 请教一个 graph connectivity 的问题
请教一个MATLAB问题EM 算法
请教:real-life xml data traces懂scale-invariant field或者图像处理的朋友请看进来 (转载)
About testing of uniform distribution我的证明应该是正确的。Re: EE challenge CS
谁知道 一致有限性 英语怎么翻? 谢了.another attempt
请教一道老面试题,谢谢Guys, let us not give up
answer Re: EE challenge CSSTOP wasting time!Re: EE challenge CS
相关话题的讨论汇总
话题: curve话题: proof话题: point话题: trace话题: uniform