b******h 发帖数: 71 | 1 Why the eigenvector of a matrix can be 0. (Please look at the last row of Out[2]).
In[1]:=
mat={{0,1/3,2/3,0,0},{0,0,0,1/4,3/4},{0,0,0,1/2,1/2},{1,0,0,0,0},{1,0,0,0,0}};
In[2]:=
Eigenvectors[mat]
Out[2]//OutputForm=
-1 + I Sqrt[3] 1 - I Sqrt[3] 1 - I Sqrt[3]
{{--------------, -1 + -------------, -1 + -------------, 1, 1},
2 2 2
-1 - I Sqrt[3] 1 + I Sqrt[3] 1 + I Sqrt[3]
{--------------, -1 + -------------, -1 + --------- | y**t 发帖数: 50 | 2 The matrix has a Jordan block of size 2X2. So it only has 4 eigenvectors.
Nothing wrong here.
【在 b******h 的大作中提到】 : Why the eigenvector of a matrix can be 0. (Please look at the last row of Out[2]). : In[1]:= : mat={{0,1/3,2/3,0,0},{0,0,0,1/4,3/4},{0,0,0,1/2,1/2},{1,0,0,0,0},{1,0,0,0,0}}; : In[2]:= : Eigenvectors[mat] : Out[2]//OutputForm= : -1 + I Sqrt[3] 1 - I Sqrt[3] 1 - I Sqrt[3] : {{--------------, -1 + -------------, -1 + -------------, 1, 1}, : 2 2 2 : -1 - I Sqrt[3] 1 + I Sqrt[3] 1 + I Sqrt[3]
| b******h 发帖数: 71 | 3 问题是在Mathematica里如何才能对角化mat呢?
【在 y**t 的大作中提到】 : The matrix has a Jordan block of size 2X2. So it only has 4 eigenvectors. : Nothing wrong here.
|
|