h****g 发帖数: 324 | 1 我的实验得到一组数据,想拟合到一个公式:A=Ao*exp[(Bo/B)^(1/(1+d))] (d=1,2 or
3), Ao 和 Bo 是常数。
A 和 B 是实验数据, 想看到底d=1, 2还是3的时候拟合最好, 于是我两边区对数,画出
lnA---B^(-1/(1+d))的曲线,居然傻眼了,发现d=1,2和3的时候都可以得到很好的直线
,问题到底出在哪里?请牛人指教,谢谢 | r****y 发帖数: 1437 | 2 Your plot is not right,
Bo^(1/(1+d)) is in your formula but left out when you plot lnA-
curves.
Since you are varying d, you cannot ignore that term.
or
画出
【在 h****g 的大作中提到】 : 我的实验得到一组数据,想拟合到一个公式:A=Ao*exp[(Bo/B)^(1/(1+d))] (d=1,2 or : 3), Ao 和 Bo 是常数。 : A 和 B 是实验数据, 想看到底d=1, 2还是3的时候拟合最好, 于是我两边区对数,画出 : lnA---B^(-1/(1+d))的曲线,居然傻眼了,发现d=1,2和3的时候都可以得到很好的直线 : ,问题到底出在哪里?请牛人指教,谢谢
| h****g 发帖数: 324 | 3 那这么说我要先确定Bo阿?我还指望能够从fitting 中得到Bo的值呢,有什么办法解决
Bo吗? | n****g 发帖数: 150 | 4 A0=0.000001;
B0=0.000001;
replot, and you'll see difference. | f*****y 发帖数: 124 | 5 Of Course
y=lnA, x=B^(-1/(1+d));
y=lnA0+B0^(1/(1+d))*x
lnA0 and B0 are constant,
you should get three straight lines with a same intercept y=lnA0
and three different slopes of B0^(1/2),^(1/3),^(1/4)
you should plot lnA~B
or
画出
【在 h****g 的大作中提到】 : 我的实验得到一组数据,想拟合到一个公式:A=Ao*exp[(Bo/B)^(1/(1+d))] (d=1,2 or : 3), Ao 和 Bo 是常数。 : A 和 B 是实验数据, 想看到底d=1, 2还是3的时候拟合最好, 于是我两边区对数,画出 : lnA---B^(-1/(1+d))的曲线,居然傻眼了,发现d=1,2和3的时候都可以得到很好的直线 : ,问题到底出在哪里?请牛人指教,谢谢
| h****g 发帖数: 324 | 6 Then how can I determine d?
thanks for help
【在 f*****y 的大作中提到】 : Of Course : y=lnA, x=B^(-1/(1+d)); : y=lnA0+B0^(1/(1+d))*x : lnA0 and B0 are constant, : you should get three straight lines with a same intercept y=lnA0 : and three different slopes of B0^(1/2),^(1/3),^(1/4) : you should plot lnA~B : : or : 画出
| f*****y 发帖数: 124 | 7 If the d is just one of 1,2 or 3,(or any integer)
you can plot lines with different d!then find out which line fits your data.
If d is not an interger, you should find a way to regress your data by an ex
ponential rule.
you should get values of a, b and c in a regression equation like lnA=a+bB^c
.
A0=a,(-1/(1+d))=c and B0=-b/c....
Good luck
【在 h****g 的大作中提到】 : Then how can I determine d? : thanks for help
| j**u 发帖数: 6059 | 8 It's very possible you get all straight lines if you don't have a broad rang
e of data. Evaluating goodness of fit is a possible way to determine which o
ne is better.
data.
ex
^c
【在 f*****y 的大作中提到】 : If the d is just one of 1,2 or 3,(or any integer) : you can plot lines with different d!then find out which line fits your data. : If d is not an interger, you should find a way to regress your data by an ex : ponential rule. : you should get values of a, b and c in a regression equation like lnA=a+bB^c : . : A0=a,(-1/(1+d))=c and B0=-b/c.... : Good luck
|
|