w**********l 发帖数: 2 | 1 我的问题是,对于一个square matrix,希望仅通过row exchange和column exchange,
将它变换成一个block-
diagonal matrix,里面的数字保持不变。简单来说就是通过行列变换将矩阵里面的非
零项集中到对角线附近。不知道对于
这个问题有没有好的algorithm?谢谢! |
d*****y 发帖数: 140 | 2 如果解是存在的,A=[B C;D E],其中C和D都是严格的0矩阵,那么,A可以看作一个图:
a_{ij}!=0 if node i has a link to j. 那么,这个问题等价于在一个大图中把相互
不链接的子图找出来,用breath-first-search就可以了。
如果非对角线的矩阵不是严格的0矩阵,而只是值非常小,那么这其实是一个寻找
cluster的问题,就有很多算法,也很难一定说谁最优。
【在 w**********l 的大作中提到】 : 我的问题是,对于一个square matrix,希望仅通过row exchange和column exchange, : 将它变换成一个block- : diagonal matrix,里面的数字保持不变。简单来说就是通过行列变换将矩阵里面的非 : 零项集中到对角线附近。不知道对于 : 这个问题有没有好的algorithm?谢谢!
|
w**********l 发帖数: 2 | 3 我用过biclustering的方法,但是biclustering好像只是将矩阵进行分区,而不会将行
列重新排列之后再做clustering。请问你知道哪几种biclustering algorithm能解决这
个问题吗?谢谢! |
s*******g 发帖数: 483 | 4 spectral co-clustering其实可以告诉你怎么排列的。
【在 w**********l 的大作中提到】 : 我用过biclustering的方法,但是biclustering好像只是将矩阵进行分区,而不会将行 : 列重新排列之后再做clustering。请问你知道哪几种biclustering algorithm能解决这 : 个问题吗?谢谢!
|