m******y 发帖数: 266 | 1 譬如一个很简单的参数化的问题:E{(y-xb)exp(x)} >= 0. | e*******a 发帖数: 514 | 2 E{(y-xb)exp(x)}
=E[E{(y-xb)exp(x)}|X]
=E[exp(x)(E{y|X}-xb)]>= 0
Through sample analog,
1/n \sum_{i=1}^n[exp(x_i) (\sum{i=1}^n (y_i-x_i*b))]>=0.
I guess, matlab fminsearch will do the work.
This is my take on your question. Never read anything about partial
identification problem before. Low credibility in my answer.
Good luck.
【在 m******y 的大作中提到】 : 譬如一个很简单的参数化的问题:E{(y-xb)exp(x)} >= 0.
| m******y 发帖数: 266 | 3 你这想法不错,一开始我也是这么想的。但后来实际问题是,你很容易定义sample
sanlog of E[exp(x)(E{y|X}-
xb)]>= 0. 但是程序要run出一个set,而不是一个点的时候,计算问题就出来了。
【在 e*******a 的大作中提到】 : E{(y-xb)exp(x)} : =E[E{(y-xb)exp(x)}|X] : =E[exp(x)(E{y|X}-xb)]>= 0 : Through sample analog, : 1/n \sum_{i=1}^n[exp(x_i) (\sum{i=1}^n (y_i-x_i*b))]>=0. : I guess, matlab fminsearch will do the work. : This is my take on your question. Never read anything about partial : identification problem before. Low credibility in my answer. : Good luck.
| e*******a 发帖数: 514 | 4 The sample analog (sa) is:
1/n \sum_{i=1}^n {exp(x_i)*[\sum_{j=1}^n y_j -x_i*\beta]}>=0,
define y_bar = \sum_{j=1}^n y_j,
the sa becomes:
1/n \sum_{i=1}^n {exp(x_i)*[y_bar -x_i*\beta]}>=0.
Let's start with a simple case, \beta is in R.
sa implies \beta <= (y_bar * \sum_{i=1}^n exp(x_i) )/(\sum_{i=1}^n x_i).
Here, you only need a calculator.
If \beta is in a compact subset of R^2. You could fix one of the coordinates
of \beta first, then it reduces to the previous case. So for your program,
you h
【在 m******y 的大作中提到】 : 你这想法不错,一开始我也是这么想的。但后来实际问题是,你很容易定义sample : sanlog of E[exp(x)(E{y|X}- : xb)]>= 0. 但是程序要run出一个set,而不是一个点的时候,计算问题就出来了。
| m******y 发帖数: 266 | 5 计算的问题在于,你不可能把参数空间都搜索一遍,因此我们最大化concave/convex的
目标函数时候,结合data,可以根据高斯牛顿法很“快”寻找出解。要把整个参数空间
都找一遍的办法是几乎不可行的。别的计算方法,譬如Han Hong他们的MCMC,也是希望
直接根据data直接找到解。
coordinates
,
【在 e*******a 的大作中提到】 : The sample analog (sa) is: : 1/n \sum_{i=1}^n {exp(x_i)*[\sum_{j=1}^n y_j -x_i*\beta]}>=0, : define y_bar = \sum_{j=1}^n y_j, : the sa becomes: : 1/n \sum_{i=1}^n {exp(x_i)*[y_bar -x_i*\beta]}>=0. : Let's start with a simple case, \beta is in R. : sa implies \beta <= (y_bar * \sum_{i=1}^n exp(x_i) )/(\sum_{i=1}^n x_i). : Here, you only need a calculator. : If \beta is in a compact subset of R^2. You could fix one of the coordinates : of \beta first, then it reduces to the previous case. So for your program,
|
|