e*******t 发帖数: 111 | 1 地板上画满了间隔一寸的平行线。一根一寸长的牙签随机落到地板上,问牙签压上其中
一条线的几率是多少? |
s**x 发帖数: 405 | |
r**h 发帖数: 1288 | 3 http://en.wikipedia.org/wiki/Buffon%27s_needle
【在 e*******t 的大作中提到】 : 地板上画满了间隔一寸的平行线。一根一寸长的牙签随机落到地板上,问牙签压上其中 : 一条线的几率是多少?
|
z****p 发帖数: 18 | 4
2/pi
【在 e*******t 的大作中提到】 : 地板上画满了间隔一寸的平行线。一根一寸长的牙签随机落到地板上,问牙签压上其中 : 一条线的几率是多少?
|
z****p 发帖数: 18 | 5
1. consider the case that the stick forms an angle beween 0 and 90 degree (0
to pi/2)
--the angle distribution is uniformly between 0 and pi/2 (with pdf of 2/pi)
--the other cases will be symmetric and so give the same answer
2. convince yourself that the probability of overlapping a line is the same
as the length of the projection of the stick on the x-axis
3. the expected length of projection on the x-axis is:
--integration t from 0 to pi/2 of 2/pi*cos(t)
--the above integration gives 2/pi
【在 z****p 的大作中提到】 : : 2/pi
|
e*******t 发帖数: 111 | 6 多谢解释!
上面三位都是牛人啊。看来我要学的东西很多。
0
same
【在 z****p 的大作中提到】 : : 1. consider the case that the stick forms an angle beween 0 and 90 degree (0 : to pi/2) : --the angle distribution is uniformly between 0 and pi/2 (with pdf of 2/pi) : --the other cases will be symmetric and so give the same answer : 2. convince yourself that the probability of overlapping a line is the same : as the length of the projection of the stick on the x-axis : 3. the expected length of projection on the x-axis is: : --integration t from 0 to pi/2 of 2/pi*cos(t) : --the above integration gives 2/pi
|
j******2 发帖数: 362 | |
e*******t 发帖数: 111 | 8 A
【在 j******2 的大作中提到】 : 请问这是哪家的题?
|