p*****g 发帖数: 604 | 1 请问lagrangian strain E和eulerian strain e之间如何转换?
在离散的情况下,是不是有以下的关系?
E=(L-L_0)/L_0
e=(L_0-L)/L
假如我用的是ln的形式,
E=ln(L/L_0),e=ln(L_0/L),他们是不是就只差一个正负号?
对于2维的E和e,如何转换呢? | l******n 发帖数: 335 | 2
in large strain, probably, not right!
square each term
^^^^^^^^^^ ?????? never seen this definition
【在 p*****g 的大作中提到】 : 请问lagrangian strain E和eulerian strain e之间如何转换? : 在离散的情况下,是不是有以下的关系? : E=(L-L_0)/L_0 : e=(L_0-L)/L : 假如我用的是ln的形式, : E=ln(L/L_0),e=ln(L_0/L),他们是不是就只差一个正负号? : 对于2维的E和e,如何转换呢?
| a******n 发帖数: 98 | 3 linear lagrangian strain: Lij=(Ui,j+Uj,i)/2
eulerian strain is related to the time change, can not remember the
definition
对于2维的E和e,如何转换呢?tensor operation
find a bood of Continuum Mechanics and it should have the definition and
relation | s***h 发帖数: 592 | 4 your idea of eulerian strain is wrong
strain is related to time?
that is the strain rate definition.
define the displacement gradient Ui,j and Uj,i
lagrange strain is Eij=(Ui,j+Uj,i+Ui,k*Uk,j)/2
eulerian strain is eij=(Ui,j+Uj,i-Ui,k*Uk,j)/2
so if we neglect high order component Ui,k*Uk,j
those two are same at small strain case
at FINITE strain case, Ui,k*Uk,j cannot be neglected
【在 a******n 的大作中提到】 : linear lagrangian strain: Lij=(Ui,j+Uj,i)/2 : eulerian strain is related to the time change, can not remember the : definition : 对于2维的E和e,如何转换呢?tensor operation : find a bood of Continuum Mechanics and it should have the definition and : relation
|
|