由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Mathematics版 - 请教一个实分析的问题
相关主题
请教一个关于compact sets 的证明uniform convergence?
Atiyah证明S^6上不存在复结构about quadratic functions...
math experts, an interesting question please?about convergence of derivatives...
about quasiconvex optimization??问个数学分析的证明题,在线急等
help on piecewise linear functions请教一题概率的习题
find closest integer points in R^n space?Does absolute convergence imply limit n a_n = 0?
lipschitz continuity for piecewise linear functions每年奥数金牌有多少人 ?
a simple top question please?请教两个拓扑学的问题
相关话题的讨论汇总
话题: closed话题: compact话题: set话题: exists
进入Mathematics版参与讨论
1 (共1页)
b****t
发帖数: 114
1
A closed set A \in R^n and a compact set B \in R^n
show that A + B is closed, where A + B = {z: z=x+y, x \in A, y \in B, and z
\in R^n}.
provide a example that if B is closed but not compact set, then the result
does not hold.
谢谢!
beet
B****n
发帖数: 11290
2
1. Assume z_n\in A+B and z_n->z,
there exists x_n\in A, y_n\in B such that z_n=x_n+y_n.
Since B is compact, there exists a subsequence of y_n' such that y_n'->y\in
B
so there exists a subsequence x_n'->x\in A
so z=x+y\in A+B
2. choose A={1,2,3,...} B={-1,-2+1/2.-3+1/3,...}

z

【在 b****t 的大作中提到】
: A closed set A \in R^n and a compact set B \in R^n
: show that A + B is closed, where A + B = {z: z=x+y, x \in A, y \in B, and z
: \in R^n}.
: provide a example that if B is closed but not compact set, then the result
: does not hold.
: 谢谢!
: beet

u*****n
发帖数: 28
3

in
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~这是为啥?
~~~~~~~~~~~~~~~~这个是怎么得出来的?

【在 B****n 的大作中提到】
: 1. Assume z_n\in A+B and z_n->z,
: there exists x_n\in A, y_n\in B such that z_n=x_n+y_n.
: Since B is compact, there exists a subsequence of y_n' such that y_n'->y\in
: B
: so there exists a subsequence x_n'->x\in A
: so z=x+y\in A+B
: 2. choose A={1,2,3,...} B={-1,-2+1/2.-3+1/3,...}
:
: z

B****n
发帖数: 11290
4
x_n'=z_n'-y_n'->z-y. Because A is closed z-y is in A
Define x=z-y, so z=x+y is in A+B

【在 u*****n 的大作中提到】
:
: in
: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~这是为啥?
: ~~~~~~~~~~~~~~~~这个是怎么得出来的?

1 (共1页)
进入Mathematics版参与讨论
相关主题
请教两个拓扑学的问题help on piecewise linear functions
Why [0,2*pi) is not compact?find closest integer points in R^n space?
some topology questions puzzled me.lipschitz continuity for piecewise linear functions
一道简单拓扑题a simple top question please?
请教一个关于compact sets 的证明uniform convergence?
Atiyah证明S^6上不存在复结构about quadratic functions...
math experts, an interesting question please?about convergence of derivatives...
about quasiconvex optimization??问个数学分析的证明题,在线急等
相关话题的讨论汇总
话题: closed话题: compact话题: set话题: exists