w**a 发帖数: 1024 | 1 E在R^n 中LEBESGUE 可测当且仅当给定\epsilon >0,
存在 闭集F属于E使得E-F的外测度小于 \epsilon
上面的是一个定理,我想能不能换个说法
F的内点组成的集合是个开集G,并且G属于F,
那么如果E可测的话,
我们是不是也可以找到一个开集G属于E,使得E-G的外测度<\epsilon,
对吗?充分性成立吗? | B****n 发帖数: 11290 | 2 It's wrong.
Let E be [0,1]\{all the rational numbers}, then outer measure is 1 and there
is no interior point for E.
【在 w**a 的大作中提到】 : E在R^n 中LEBESGUE 可测当且仅当给定\epsilon >0, : 存在 闭集F属于E使得E-F的外测度小于 \epsilon : 上面的是一个定理,我想能不能换个说法 : F的内点组成的集合是个开集G,并且G属于F, : 那么如果E可测的话, : 我们是不是也可以找到一个开集G属于E,使得E-G的外测度<\epsilon, : 对吗?充分性成立吗?
| w**a 发帖数: 1024 | 3 given E = [0,1]\{all the rational numbers}, and \epsilon > 0.
what is the closed set F such that $F \subset E$ and outer measure
(E-F) < \epsilon . many thanks....
there
【在 B****n 的大作中提到】 : It's wrong. : Let E be [0,1]\{all the rational numbers}, then outer measure is 1 and there : is no interior point for E.
| w**a 发帖数: 1024 | 4 given E = [0,1]\{all the rational numbers}, and \epsilon > 0.
what is the closed set F such that $F \subset E$ and outer measure
(E-F) < \epsilon . many thanks....
there
【在 B****n 的大作中提到】 : It's wrong. : Let E be [0,1]\{all the rational numbers}, then outer measure is 1 and there : is no interior point for E.
| B****n 发帖数: 11290 | 5 An Intersection of closed sets is still a closed set.
So you can construct F by an intersection of a sequence of closed sets
whose measures are \{1-\epsilon/2,...,1-\frac{\epsilon}{2^n},...\}
【在 w**a 的大作中提到】 : given E = [0,1]\{all the rational numbers}, and \epsilon > 0. : what is the closed set F such that $F \subset E$ and outer measure : (E-F) < \epsilon . many thanks.... : : there
|
|