由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Mathematics版 - [合集] 给会calculus的人出一道题吧
相关主题
[合集] 不是有理数就是超越数?Question
请问[0,1]内的有理数是开集还是闭集?测度问题
测度论和实分析是不是相差不大?a simple top question please?
Re: 请举个不可测集的例子RA positions available in ASU E.E. department
请教几个数学sub考试的题目?麻烦问下大家一个real analysis的问题啊
各位大牛:请给一个数学学习路线图frobenius map 的rational canonical form 和Jordan normal form
转专业,四门数学课应付得来吗因式分解 a-bx+cx^2-dx^3
有人能帮翻译一下吗?急着要可以说 any Borel set is the countable union of open sets and closed sets 吗?
相关话题的讨论汇总
话题: so话题: 有理数话题: function话题: continuous话题: rational
进入Mathematics版参与讨论
1 (共1页)
M*********m
发帖数: 2024
1
【 以下文字转载自 Literature 讨论区 】
发信人: Microsystem (clam), 信区: Literature
标 题: [合集] 给会calculus的人出一道题吧
发信站: BBS 未名空间站 (Sat Nov 1 19:28:39 2008), 站内
☆─────────────────────────────────────☆
seiya (天馬流星拳 - 飛呀飛呀我的馬) 于 (Sat Nov 1 14:03:43 2008) 提到:
这个可能比较难,限本科学过calculus的吧
定义一个连续函数,把[0,1]上的有理数一对一地映到(0,1)上的有理数,
只要求在有理数上连续,无理数不管它
☆─────────────────────────────────────☆
lhr (麻辣呆牛筋) 于 (Sat Nov 1 14:05:17 2008) 提到:
我学过亚,但是现在只记得calculus这个词
还是来点幼儿园的题目吧,大星期六的,太打击人了
☆─────────────────────────────────────
M*********m
发帖数: 2024
2
能不能帮我们做道题?:)多谢。

【在 M*********m 的大作中提到】
: 【 以下文字转载自 Literature 讨论区 】
: 发信人: Microsystem (clam), 信区: Literature
: 标 题: [合集] 给会calculus的人出一道题吧
: 发信站: BBS 未名空间站 (Sat Nov 1 19:28:39 2008), 站内
: ☆─────────────────────────────────────☆
: seiya (天馬流星拳 - 飛呀飛呀我的馬) 于 (Sat Nov 1 14:03:43 2008) 提到:
: 这个可能比较难,限本科学过calculus的吧
: 定义一个连续函数,把[0,1]上的有理数一对一地映到(0,1)上的有理数,
: 只要求在有理数上连续,无理数不管它
: ☆─────────────────────────────────────☆

G******i
发帖数: 163
3
f(x)= { 0.1+x*sqrt(2) }
{a}=the fractional part of a.
G******i
发帖数: 163
4
Then, construct a continuous g
from f(Q\cap[0,1]) to Q\cap (0,1).

【在 G******i 的大作中提到】
: f(x)= { 0.1+x*sqrt(2) }
: {a}=the fractional part of a.

d*z
发帖数: 150
5
这样的函数显然不存在。
我们非常容易可以证明这样的函数在有理数集上单调。
假设不单调,不妨设有有理数0 f(a) 由于函数f连续,由介值定理,存在实数u in (a,b)使得f(u)=f(c)为有理数。
由于f在[0,1]上所有取值有理数的点的原像为有理数,得到u为有理数。
所以有理数u和c的取值相同,同一一映射矛盾。
而得到这个函数在有理数集上单调以后,很显然可以看出函数不存在了

【在 M*********m 的大作中提到】
: 能不能帮我们做道题?:)多谢。
s******n
发帖数: 876
6
f(在实数集)上不一定连续啊

【在 d*z 的大作中提到】
: 这样的函数显然不存在。
: 我们非常容易可以证明这样的函数在有理数集上单调。
: 假设不单调,不妨设有有理数0: f(a): 由于函数f连续,由介值定理,存在实数u in (a,b)使得f(u)=f(c)为有理数。
: 由于f在[0,1]上所有取值有理数的点的原像为有理数,得到u为有理数。
: 所以有理数u和c的取值相同,同一一映射矛盾。
: 而得到这个函数在有理数集上单调以后,很显然可以看出函数不存在了

s******n
发帖数: 876
7
数学系的说话太简练了吧? 具体点?

【在 G******i 的大作中提到】
: Then, construct a continuous g
: from f(Q\cap[0,1]) to Q\cap (0,1).

K****Y
发帖数: 74
8
such function doesn't exist.
[a,b] in Q is compact, f is continuous, which means f([a,b]) is compact,
while (a,b) is not closed.
M*********m
发帖数: 2024
9
所以这个命题是否定的?顺道问问大家,我喜欢复分析,喜欢几何,不过都是大学水平
,如果要进一步学习,应该怎么走呢?

【在 K****Y 的大作中提到】
: such function doesn't exist.
: [a,b] in Q is compact, f is continuous, which means f([a,b]) is compact,
: while (a,b) is not closed.

K****Y
发帖数: 74
10
For mathematical analysis, the book by Tom Apostol or Rudin is a good start.
No idea for Geometry.

【在 M*********m 的大作中提到】
: 所以这个命题是否定的?顺道问问大家,我喜欢复分析,喜欢几何,不过都是大学水平
: ,如果要进一步学习,应该怎么走呢?

相关主题
各位大牛:请给一个数学学习路线图Question
转专业,四门数学课应付得来吗测度问题
有人能帮翻译一下吗?急着要a simple top question please?
进入Mathematics版参与讨论
G******i
发帖数: 163
11
首先记住不要轻信别人的话,包括我的这句话

【在 M*********m 的大作中提到】
: 所以这个命题是否定的?顺道问问大家,我喜欢复分析,喜欢几何,不过都是大学水平
: ,如果要进一步学习,应该怎么走呢?

G******i
发帖数: 163
12
你看了Apostol 和 Rudin,怎么还没搞懂compactness的概念?

start.

【在 K****Y 的大作中提到】
: For mathematical analysis, the book by Tom Apostol or Rudin is a good start.
: No idea for Geometry.

K****Y
发帖数: 74
13
There is something wrong in the Proof? [a,b] in Q is compact, since for any
open cover, you can find finite
number of opens sets to cover this. But (a,b) is not compact since it's not
closed. I didn't see anything
wrong. But please correct me if I am wrong. Thanks a lot

【在 G******i 的大作中提到】
: 你看了Apostol 和 Rudin,怎么还没搞懂compactness的概念?
:
: start.

v********e
发帖数: 1058
14
"[a, b] in Q" 是指[a, b] \cap Q? 那这集合是closed的么?

any
not

【在 K****Y 的大作中提到】
: There is something wrong in the Proof? [a,b] in Q is compact, since for any
: open cover, you can find finite
: number of opens sets to cover this. But (a,b) is not compact since it's not
: closed. I didn't see anything
: wrong. But please correct me if I am wrong. Thanks a lot

K****Y
发帖数: 74
15
In metric space Q, [0,1] is closed since all it contains all its limit
points, right?
s*******n
发帖数: 740
16
(0,1)内有理数可列
1/2,1/3,2/3,1/4,3/4.......
So
映射
0->1/2
1->1/3
1/2->2/3
1/3->1/4
.
.
.
.
.
s*******n
发帖数: 740
17
我记得这是某年复旦保送生考试的题目
K****Y
发帖数: 74
18
yes, the bounded set in Q is at most countable, but the function for this is
not continuous and 1-to-1, (hence monotonic)

【在 s*******n 的大作中提到】
: (0,1)内有理数可列
: 1/2,1/3,2/3,1/4,3/4.......
: So
: 映射
: 0->1/2
: 1->1/3
: 1/2->2/3
: 1/3->1/4
: .
: .

K****Y
发帖数: 74
19
f(0)=0. but f([0,1])=(0,1)
K****Y
发帖数: 74
20
for this one, let i=0, j=n, then f(0)=1/n, which is not a function, since f(
0) is not unique.
相关主题
RA positions available in ASU E.E. department因式分解 a-bx+cx^2-dx^3
麻烦问下大家一个real analysis的问题啊可以说 any Borel set is the countable union of open sets and closed sets 吗?
frobenius map 的rational canonical form 和Jordan normal formhelp for math, thanks a lot!
进入Mathematics版参与讨论
l******o
发帖数: 1550
21
不连续

【在 s*******n 的大作中提到】
: (0,1)内有理数可列
: 1/2,1/3,2/3,1/4,3/4.......
: So
: 映射
: 0->1/2
: 1->1/3
: 1/2->2/3
: 1/3->1/4
: .
: .

w********9
发帖数: 8613
22

f(
As a math major, you should have understood what I really meant, which was
why I demanded a 90+ for myself.

【在 K****Y 的大作中提到】
: for this one, let i=0, j=n, then f(0)=1/n, which is not a function, since f(
: 0) is not unique.

w********9
发帖数: 8613
23
我没有数学专业背景,错了也要给九十分以上。:)
For a rational in its irreducible form i/j (0 being expressed as 0/1),
i/j -> (i+1)/(j+2)
where integers i and j satisfy:j >= i >= 0 and j > 0.
我要九十五分以上。:)
K****Y
发帖数: 74
24
HAHA.
Well, I am not a math major, I am in engineering, just interested in Math.
For this one, f(x)=1/3, f(y)=1/4, and you have x=y. So it's not a function

【在 w********9 的大作中提到】
: 我没有数学专业背景,错了也要给九十分以上。:)
: For a rational in its irreducible form i/j (0 being expressed as 0/1),
: i/j -> (i+1)/(j+2)
: where integers i and j satisfy:j >= i >= 0 and j > 0.
: 我要九十五分以上。:)

w********9
发帖数: 8613
25

Notice that I had already allowed a rational to only have a UNIQUE
representation form. So it can't have two or more mapped values.
Why hadn't you decalred so earlier? ;)
Wrong.

【在 w********9 的大作中提到】
: 我没有数学专业背景,错了也要给九十分以上。:)
: For a rational in its irreducible form i/j (0 being expressed as 0/1),
: i/j -> (i+1)/(j+2)
: where integers i and j satisfy:j >= i >= 0 and j > 0.
: 我要九十五分以上。:)

K****Y
发帖数: 74
26
In metric space Q, f is continuous, [a,b] is connected, which means f([a,b])
need to be connected, hence
range of f contains all the rational value (0,1).
Choose f(x)=1/3, f(y)=1/4, you will have x=0/2, y=0/3, hence x=y.

【在 w********9 的大作中提到】
:
: Notice that I had already allowed a rational to only have a UNIQUE
: representation form. So it can't have two or more mapped values.
: Why hadn't you decalred so earlier? ;)
: Wrong.

w********9
发帖数: 8613
27

])
You can't have that, since I had said earlier: "(0 being (only) expressed as
0/1)".
If you do the mapping from x (with a unique i/j representation) to y, it has one and only one mapped value.

【在 K****Y 的大作中提到】
: In metric space Q, f is continuous, [a,b] is connected, which means f([a,b])
: need to be connected, hence
: range of f contains all the rational value (0,1).
: Choose f(x)=1/3, f(y)=1/4, you will have x=0/2, y=0/3, hence x=y.

K****Y
发帖数: 74
28
But the function need an x such that f(x)=1/3, and a y such that f(y)=1/4,
right?
So what's the x and y?

as
has one and only one mapped
value.

【在 w********9 的大作中提到】
:
: ])
: You can't have that, since I had said earlier: "(0 being (only) expressed as
: 0/1)".
: If you do the mapping from x (with a unique i/j representation) to y, it has one and only one mapped value.

w********9
发帖数: 8613
29

,
Solve for integers i and j satisfying those conditions in
(i+1)/(j+1) = r = k/l (k/l is r's irreducible form as defined earlier)
It turns into an elementary number theory problem, with i and j being
relatively prime to each other.
Solve for ax+by =c (a, b, and c are all integers) in integers x and y. Key
word: congruence. Solutions always exit. So don't worry about its non-
existence.
x=1/4 and 1/6 for y = 1/3 and 1/4, respectively.

【在 K****Y 的大作中提到】
: But the function need an x such that f(x)=1/3, and a y such that f(y)=1/4,
: right?
: So what's the x and y?
:
: as
: has one and only one mapped
: value.

K****Y
发帖数: 74
30

Okay, I am lost. hehe
you said i/j -> (i+1)/(j+2), right? and i thought x=i/j, and f(x)=(i+1)/(j+2
).
x should be [0,1], which is right since you claim j>=i>=0 and j>0. Also i
and j have no common factor.
And You are right about f(1/4)=1/3. But then how do you define f(2/7)?

【在 w********9 的大作中提到】
:
: ,
: Solve for integers i and j satisfying those conditions in
: (i+1)/(j+1) = r = k/l (k/l is r's irreducible form as defined earlier)
: It turns into an elementary number theory problem, with i and j being
: relatively prime to each other.
: Solve for ax+by =c (a, b, and c are all integers) in integers x and y. Key
: word: congruence. Solutions always exit. So don't worry about its non-
: existence.
: x=1/4 and 1/6 for y = 1/3 and 1/4, respectively.

相关主题
泡沫或真理?计算技术专家说了算!请问[0,1]内的有理数是开集还是闭集?
八卦一下测度论和实分析是不是相差不大?
[合集] 不是有理数就是超越数?Re: 请举个不可测集的例子
进入Mathematics版参与讨论
w********9
发帖数: 8613
31

+2
The same value of 1/3, but it doesn't affect the fact that the mapping
correspondes to a function.
It is a function, but it doesn't map to an irrational value, so it is not
continuous. So I was wrong.
How about i/j -> lg(i+1)/lg(j+2)? It covers a lot of irrational values, but
it may still not be helping the whole situation. :)

【在 K****Y 的大作中提到】
:
: Okay, I am lost. hehe
: you said i/j -> (i+1)/(j+2), right? and i thought x=i/j, and f(x)=(i+1)/(j+2
: ).
: x should be [0,1], which is right since you claim j>=i>=0 and j>0. Also i
: and j have no common factor.
: And You are right about f(1/4)=1/3. But then how do you define f(2/7)?

c*******g
发帖数: 509
32
Does NOT exist.
w********9
发帖数: 8613
33
The problem is misleading. It really has no solution.
We can't find a continuous function, because there are more irrational
numbers than rational numbers. There are always irrational number no being
mapped to for any given mapping.
This should conclude it.
s*******n
发帖数: 740
34
哦,忽略了还有continuous这个限制
但是it is really a bijection

is

【在 K****Y 的大作中提到】
: yes, the bounded set in Q is at most countable, but the function for this is
: not continuous and 1-to-1, (hence monotonic)

s*******n
发帖数: 740
35
lz说只要在Q上连续

【在 w********9 的大作中提到】
: The problem is misleading. It really has no solution.
: We can't find a continuous function, because there are more irrational
: numbers than rational numbers. There are always irrational number no being
: mapped to for any given mapping.
: This should conclude it.

f******k
发帖数: 297
36
depends on the topology you choose on Q.

【在 l******o 的大作中提到】
: 不连续
d*z
发帖数: 150
37
这个题目定义的有点不是很清楚,我觉得需要重新澄清一下.
比如这里连续指得就是普通微积分里面得连续概念(所以我们不需要重新定义有理数集上
的拓扑),而这里只需要在所有的有理点连续,而在无理点是否连续没有关系.
同样,另外一个问题式[0,1]上的有理点一一对应到(0,1)上的有理点.这里也有个不清楚
的地方.比如有一个[0,1]中的有理点a使得f(a)=1/2.那么如果还有一个无理点b使得f(b
)=1/2,这个函数是否算满足条件呢?那么这里我们假设这样的函数是算满足条件的.
也就是说这个函数会将[0,1]中的所有有理点映射到(0,1)中的有理点,而且不同的有理点
被映射到不同的值.另外(0,1)中每个有理点,肯定有唯一一个[0,1]中有理点被映射成这
个值(但是还可以允许存在无理点被映射过来).
那么在这样的约束之下,这样的函数是否存在呢?

【在 M*********m 的大作中提到】
: 【 以下文字转载自 Literature 讨论区 】
: 发信人: Microsystem (clam), 信区: Literature
: 标 题: [合集] 给会calculus的人出一道题吧
: 发信站: BBS 未名空间站 (Sat Nov 1 19:28:39 2008), 站内
: ☆─────────────────────────────────────☆
: seiya (天馬流星拳 - 飛呀飛呀我的馬) 于 (Sat Nov 1 14:03:43 2008) 提到:
: 这个可能比较难,限本科学过calculus的吧
: 定义一个连续函数,把[0,1]上的有理数一对一地映到(0,1)上的有理数,
: 只要求在有理数上连续,无理数不管它
: ☆─────────────────────────────────────☆

m****e
发帖数: 130
38
作为R的子空间,[0,1]\cap Q 和 (0,1) \cap Q是同胚的

集上
(b
理点

【在 d*z 的大作中提到】
: 这个题目定义的有点不是很清楚,我觉得需要重新澄清一下.
: 比如这里连续指得就是普通微积分里面得连续概念(所以我们不需要重新定义有理数集上
: 的拓扑),而这里只需要在所有的有理点连续,而在无理点是否连续没有关系.
: 同样,另外一个问题式[0,1]上的有理点一一对应到(0,1)上的有理点.这里也有个不清楚
: 的地方.比如有一个[0,1]中的有理点a使得f(a)=1/2.那么如果还有一个无理点b使得f(b
: )=1/2,这个函数是否算满足条件呢?那么这里我们假设这样的函数是算满足条件的.
: 也就是说这个函数会将[0,1]中的所有有理点映射到(0,1)中的有理点,而且不同的有理点
: 被映射到不同的值.另外(0,1)中每个有理点,肯定有唯一一个[0,1]中有理点被映射成这
: 个值(但是还可以允许存在无理点被映射过来).
: 那么在这样的约束之下,这样的函数是否存在呢?

j******w
发帖数: 690
39
I didnt' check the details. But the following construction should work.
I am waiting for the simpler proof.
Let p_n be an enumeration of rationals in (0,1)
Let u_n be an enumeration of rational open intervals in [0,1].
Define f on rationals as follows:
At stage 0. f(0)=p_1, f(1)=p_2. Moreover, let u_i be the least i so that
the following forced condition is consistent : f 1-1 maps rationals in u_i
onto the rationals in u_0
At stage n+1, if f(p_n) is undefined, let f(p_n) be p_i where i is the l
R*****1
发帖数: 173
40
Here is my opinion:
If we do not require the map to be onto. It is easy, just gives out a linear
map like x+(0.5-x)/2.
However, when we requires the map to be onto. The claim is false.
A={rational numbers in [0,1]} B={rational numbers in (0,1)}.
A is a close set. B is not. 1-1,onto , continuous function keeps topology
properties. That means A and B should be close or open at the same time.
I think many people confuse about this because of the concept "1-1". In
China, I used to understand it as
相关主题
Re: 请举个不可测集的例子转专业,四门数学课应付得来吗
请教几个数学sub考试的题目?有人能帮翻译一下吗?急着要
各位大牛:请给一个数学学习路线图Question
进入Mathematics版参与讨论
d*z
发帖数: 150
41
那么作为R的子空间,(0,1)中任意两个不同的稠密可列子集是否同胚呢?如果同胚,那么这
个题目的结果就好构造.

【在 m****e 的大作中提到】
: 作为R的子空间,[0,1]\cap Q 和 (0,1) \cap Q是同胚的
:
: 集上
: (b
: 理点

w********9
发帖数: 8613
42
"函数“和”一对一“就是onto or surjective.
The original problem really has no solution, because there are infinite
number of other rational numbers between any two given rationals. If the two
boundaries of y HAD definite immediate neighbors, it would have a trivial
solution. But they don't really have. They each don't have a definite
immediate neighbor.
1 (共1页)
进入Mathematics版参与讨论
相关主题
可以说 any Borel set is the countable union of open sets and closed sets 吗?请教几个数学sub考试的题目?
help for math, thanks a lot!各位大牛:请给一个数学学习路线图
泡沫或真理?计算技术专家说了算!转专业,四门数学课应付得来吗
八卦一下有人能帮翻译一下吗?急着要
[合集] 不是有理数就是超越数?Question
请问[0,1]内的有理数是开集还是闭集?测度问题
测度论和实分析是不是相差不大?a simple top question please?
Re: 请举个不可测集的例子RA positions available in ASU E.E. department
相关话题的讨论汇总
话题: so话题: 有理数话题: function话题: continuous话题: rational