l*******g 发帖数: 17 | 1 假设A是一已知实正定对称矩阵,特征值是 (a1,a2,...,an)
令B = DAD,其中D是任意实正定对角阵,B的特征值是(b1,b2,...,bn)
问 f(D)=max(bi)/min(bi) 的最小值是多少,或者有个bound也可以
多谢多谢! | s**e 发帖数: 1834 | 2 Find a D such that DAD=I, so the answer is 1.
【在 l*******g 的大作中提到】 : 假设A是一已知实正定对称矩阵,特征值是 (a1,a2,...,an) : 令B = DAD,其中D是任意实正定对角阵,B的特征值是(b1,b2,...,bn) : 问 f(D)=max(bi)/min(bi) 的最小值是多少,或者有个bound也可以 : 多谢多谢!
| l******3 发帖数: 6 | 3 Guess your question is to solve
minimize f(D) over all D with eigenvalues equal to b1, b2,...bn.
Seems not a trivial problem.
You may try out the following method:
Let D0=diag[b1, b2,...,bn]. Your problem can then be rewritten as
minimize norm (R^T*D0*R*A*R^T*D0*R - a* Id) over all real number a,
rotation matrix R, where Id is the identity matrix and R^T is the transpose.
Then you may try to use the usual first-order condition...
The algebraic calculations are tedious but worth trying if this i |
|