由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Mathematics版 - 一个有意思的实分析问题
相关主题
一道分析题求助请教两个线性代数题目 多谢!!!
how to argue this ?a continuously convergence question
absolute continuityAtiyah证明S^6上不存在复结构
need help for real analysis?关于英语对数学能力的负面影响
some topology questions puzzled me.老张要跟Tao见面了
请教关于连续函数的一个性质(zz)Heroes in My Heart (17)
来做 PUTNAM 题吧(zz)Heroes in My Heart (19)
help needed(zz)Heroes in My Heart (61)
相关话题的讨论汇总
话题: exists话题: continuous话题: strictly话题: positive
进入Mathematics版参与讨论
1 (共1页)
p*****n
发帖数: 758
1
show that there exists a nonnegative continuous function on [0,1] such that
f(0)=f(1)=0 and for a.e. x, f'(x) exists and is strictly positive.
Q***5
发帖数: 994
2
I think you can make this even more striking: f(0)=1, f(1)=0, and yet f'(x)>
0 a.e.
First, we construct a weaker example: f(0)=1, f(1) = 0, and f'(x)=0 a.e.
Consider the construction of Cantor set.
(1) On [1/3 2/3], define f = 1/2;
(2) On [1/9 2/9] f = 1/2*(f(0)+ f(1/3)) and [7/9 8/9] f= 1/2(f(/3)+f(1))
....., and so on.
It can be shown that such a f is continuous, and f'(x) = 0, except on the
set of all the end points -- which is of measure 0.
Now, to get an example of f'(x)>0 a.e., we only hav

【在 p*****n 的大作中提到】
: show that there exists a nonnegative continuous function on [0,1] such that
: f(0)=f(1)=0 and for a.e. x, f'(x) exists and is strictly positive.

1 (共1页)
进入Mathematics版参与讨论
相关主题
(zz)Heroes in My Heart (61)some topology questions puzzled me.
Re: [转载] 有人熟悉分形维数和测度理论吗?请教关于连续函数的一个性质
Re: 极限和连续的几个问题来做 PUTNAM 题吧
请教一个发表文章的问题help needed
一道分析题求助请教两个线性代数题目 多谢!!!
how to argue this ?a continuously convergence question
absolute continuityAtiyah证明S^6上不存在复结构
need help for real analysis?关于英语对数学能力的负面影响
相关话题的讨论汇总
话题: exists话题: continuous话题: strictly话题: positive