由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Mathematics版 - 包子悬赏问题:多元微积分的证明题
相关主题
请问这个事实存在么?请教高手,如何对逆矩阵求导?
请教一个问题高人过来看看:Newton-Raphson 方法
求助一道微积分证明题出一道题 解热方程
请问"对X求导"英文是"derive at X"吗?how to evaluate partial sum of the exponential function?
一个一致收敛的问题问个微积分问题啊
问个函数单调性的问题请教定积分问题
请教读统计的同学一个问题,谢谢!调和函数一问
积分微分方程的数值求解?外行问一个翻译
相关话题的讨论汇总
话题: partial话题: frac话题: derivative话题: let话题: take
进入Mathematics版参与讨论
1 (共1页)
e********0
发帖数: 259
1
请见图:欲证明claim,但是证到问号处就卡住了。
最好这个claim本身是一个定理,这样我就可以直接用了。
注释:claim中的middle hand side: 对x-y的绝对值分之一求m阶导(注意x,y都是3元
的向量,所以j1,...jm是可以相等的。),再对导函数取y=0.
第一个把这个问题证出来或者告知定理出处的兄弟给20个包子!
e********0
发帖数: 259
2
不好意思,您的意思是f对xi的导数与f对yi的导数是“对称”的?我不太能理解您
的argument. 如果您能帮我把证明的过程写出来,将非常有帮助。我会给您20包子。
谢谢!
do you mean it suffice to prove:
the partial derivative of

y\
B********e
发帖数: 10014
3
haha, sorry, 大嘴巴了
准确说两者只差个符号(for all x\neq y)
e********0
发帖数: 259
4
can you prove it or not? This is a 3-D problem and m
can be arbirary integer, so you have to do some induction...

【在 B********e 的大作中提到】
: haha, sorry, 大嘴巴了
: 准确说两者只差个符号(for all x\neq y)

B********e
发帖数: 10014
5
forget all the |y=0 in your calculation first
work on your last second equation
move \partial y's out and move \partial x in
use what i said

【在 e********0 的大作中提到】
: can you prove it or not? This is a 3-D problem and m
: can be arbirary integer, so you have to do some induction...

e********0
发帖数: 259
6
sorry.. I don't follow what you are saying
Can you write it down and upload it? I'll give you 20 baozi!

【在 B********e 的大作中提到】
: forget all the |y=0 in your calculation first
: work on your last second equation
: move \partial y's out and move \partial x in
: use what i said

n***p
发帖数: 7668
7
让我尝试着解释一下。 It is just about symmetry.
Let r =|y-x|. Then
\frac{\partial r}{\partial y_i} = (y_i-x_i)/r
and
\frac{\partial r}{\partial x_i} = (x_i- y_i)/r.
That is
\frac{\partial r}{\partial y_i}
= - \frac{\partial r}{\partial x_i}.
For any function f(r), if you take partial derivative in
y, it is just chain rule. Say
\frac{\partial}{\partial y_i} f(r)
= f'(r) \frac{\partial r}{\partial y_i}
= - f'(r)\frac{\partial r}{\partial x_i}
= - \frac{\partial}{\partial x_i} f(r).
When you take partial derivatives m times, you apply
similar arguments m times and ultimately you have a constant
C = (-1)^m.
e********0
发帖数: 259
8
thanks for your reply. This looks very promising.
What do you exactly mean by "\frac{\partial}{\partial y_i} f(r)"?
the derivative of f(r) with respect to y_i? then what is the "\frac"
for?
And why are we concerned about "any function f(r)"? We are only
interested in f(r)=1/r here, aren't we?

【在 n***p 的大作中提到】
: 让我尝试着解释一下。 It is just about symmetry.
: Let r =|y-x|. Then
: \frac{\partial r}{\partial y_i} = (y_i-x_i)/r
: and
: \frac{\partial r}{\partial x_i} = (x_i- y_i)/r.
: That is
: \frac{\partial r}{\partial y_i}
: = - \frac{\partial r}{\partial x_i}.
: For any function f(r), if you take partial derivative in
: y, it is just chain rule. Say

n***p
发帖数: 7668
9
I wrote the expressions in latex commands. \frac is a latex command
indication a fraction.
\frac{\partial}{\partial y_i} f(r) means
the partial derivative of f(r) with respect to y_i.
As to "any function f(r)", if you get the idea for any function,
immediately you get the idea for the specific case when f(r) = 1/r, right?


【在 e********0 的大作中提到】
: thanks for your reply. This looks very promising.
: What do you exactly mean by "\frac{\partial}{\partial y_i} f(r)"?
: the derivative of f(r) with respect to y_i? then what is the "\frac"
: for?
: And why are we concerned about "any function f(r)"? We are only
: interested in f(r)=1/r here, aren't we?

e********0
发帖数: 259
10
10 baozi sent, because you did not show why "take derivative to y, then let y=0" and "let y=0, then take derivative to x" are the same, i.e, why "differentiation" commutes with "taking value", which is the critical step.

【在 n***p 的大作中提到】
: I wrote the expressions in latex commands. \frac is a latex command
: indication a fraction.
: \frac{\partial}{\partial y_i} f(r) means
: the partial derivative of f(r) with respect to y_i.
: As to "any function f(r)", if you get the idea for any function,
: immediately you get the idea for the specific case when f(r) = 1/r, right?
:

n***p
发帖数: 7668
11
首先呢,一个包子是10伪币, 这个我不太关心。
本着把问题讲清楚的原则,let me try again.
Because of the symmetry,
taking derivative in y = - taking derivative in x.
Hence
"take derivative to y, then let y=0"
= - "take derivative to x, then let y=0"
= - "let y=0, then take derivative to x".
This is why when you take partial derivatives m times, there must be
a constant C = (-1)^m.

let y=0" and "let y=0, then take derivative to x" are the same, i.e, why
"differentiation" commutes with "taking value", which is the critical
step.

【在 e********0 的大作中提到】
: 10 baozi sent, because you did not show why "take derivative to y, then let y=0" and "let y=0, then take derivative to x" are the same, i.e, why "differentiation" commutes with "taking value", which is the critical step.
l******r
发帖数: 18699
12
看不清

【在 e********0 的大作中提到】
: 请见图:欲证明claim,但是证到问号处就卡住了。
: 最好这个claim本身是一个定理,这样我就可以直接用了。
: 注释:claim中的middle hand side: 对x-y的绝对值分之一求m阶导(注意x,y都是3元
: 的向量,所以j1,...jm是可以相等的。),再对导函数取y=0.
: 第一个把这个问题证出来或者告知定理出处的兄弟给20个包子!

e********0
发帖数: 259
13
100 weibi sent.

【在 n***p 的大作中提到】
: 让我尝试着解释一下。 It is just about symmetry.
: Let r =|y-x|. Then
: \frac{\partial r}{\partial y_i} = (y_i-x_i)/r
: and
: \frac{\partial r}{\partial x_i} = (x_i- y_i)/r.
: That is
: \frac{\partial r}{\partial y_i}
: = - \frac{\partial r}{\partial x_i}.
: For any function f(r), if you take partial derivative in
: y, it is just chain rule. Say

1 (共1页)
进入Mathematics版参与讨论
相关主题
外行问一个翻译一个一致收敛的问题
《微积分》第7版[PDF]问个函数单调性的问题
求解个微积分公式请教读统计的同学一个问题,谢谢!
请问pde自学了解用什么教材比较好?积分微分方程的数值求解?
请问这个事实存在么?请教高手,如何对逆矩阵求导?
请教一个问题高人过来看看:Newton-Raphson 方法
求助一道微积分证明题出一道题 解热方程
请问"对X求导"英文是"derive at X"吗?how to evaluate partial sum of the exponential function?
相关话题的讨论汇总
话题: partial话题: frac话题: derivative话题: let话题: take