t******g 发帖数: 1136 | 1 Can anyone give me any hint to following problem?
Thanks.
Suppose that $f(x)$ is continuous at $x_0$. And suppose $\{a_n\}$
and $\{b_n\}$ are any two sequences such that $a_n
$\lim_{n\rightarrow \infty}a_n=\lim_{n\rightarrow \infty}b_n=x_0$.
And
\[
\lim_{n\rightarrow \infty} \frac{f(b_n)-f(a_n)}{b_n-a_n}=L.
\]
Can we approve $f'(x_0)$ exists, and equal to $L$? Or find out a
counter example to show $f'(x_0)$ does not exist. | n***p 发帖数: 7668 | 2 No.
Counter example: f(x)=x sin(1/x) x_0 =0,
and a_n = -1/(2pi n), b_n = 1/(2pi n).
【在 t******g 的大作中提到】 : Can anyone give me any hint to following problem? : Thanks. : Suppose that $f(x)$ is continuous at $x_0$. And suppose $\{a_n\}$ : and $\{b_n\}$ are any two sequences such that $a_n: $\lim_{n\rightarrow \infty}a_n=\lim_{n\rightarrow \infty}b_n=x_0$. : And : \[ : \lim_{n\rightarrow \infty} \frac{f(b_n)-f(a_n)}{b_n-a_n}=L. : \] : Can we approve $f'(x_0)$ exists, and equal to $L$? Or find out a
| a****e 发帖数: 1247 | 3 晕, 那个题目里说的是any sequnces a_n , b_n.
【在 n***p 的大作中提到】 : No. : Counter example: f(x)=x sin(1/x) x_0 =0, : and a_n = -1/(2pi n), b_n = 1/(2pi n).
| n***p 发帖数: 7668 | 4 Ahh, then yes.
【在 a****e 的大作中提到】 : 晕, 那个题目里说的是any sequnces a_n , b_n.
|
|