N*******e 发帖数: 10 | 1 紧急求教下列问题,请各位不吝赐教, 多谢了!
1. Suppose f: R^n -> R is continuous. Prove that f(F) is Borel for every
closed set F; f(U) is Borel for every open set U; and if f is surjective,
then f(B) is Borel for every Borel set B.
2. Let B be a non-Lebesgue-measurable subset of R, and let f:R->R be defined
by
f(x)=exp(x) if x is in B, and f(x)=exp(-x) if x is not in B. Prove that
f^(-1)({x}) is Lebesgue measurable for each x in R, but f is not Lebesgue
measurable. | p***c 发帖数: 2403 | 2 随便想了一下
1. 如果F是闭,f(F)就是至多可列紧集的并
U开,U是至多可列半开半闭正方形,对每个正方形,像是可测的,就是一个区间减去几
个或开或闭的区间
如果f是双射,那很简单,如果只是满的,应该也不难
defined
【在 N*******e 的大作中提到】 : 紧急求教下列问题,请各位不吝赐教, 多谢了! : 1. Suppose f: R^n -> R is continuous. Prove that f(F) is Borel for every : closed set F; f(U) is Borel for every open set U; and if f is surjective, : then f(B) is Borel for every Borel set B. : 2. Let B be a non-Lebesgue-measurable subset of R, and let f:R->R be defined : by : f(x)=exp(x) if x is in B, and f(x)=exp(-x) if x is not in B. Prove that : f^(-1)({x}) is Lebesgue measurable for each x in R, but f is not Lebesgue : measurable.
| C*******r 发帖数: 10345 | 3 2. f^(-1)({x}) = 空集,或 {log(x)}, 或 {log(x),-log(x)}, 都是可测集。
let n=...-3,-2,-1,0,1,2,3...
存在n,such that [n,n+1)交B 是不可测集。(不然 并^(n){[n,n+1)交B}=B 是可测
集,矛盾)。
不失一般性,假设n>0 (不然用B补集,也是不可测集)。那么[exp(n),exp(n+1)) 是
Borel集,而 f^(-1)([exp(n),exp(n+1)))=([n,n+1)交B)并((-n-1,n]交B补)
这得到一个不可测集,不然 ([n,n+1)交B)并((-n-1,n]交B补)交[0,inf)
= n{[n,n+1)交B 推出 n{[n,n+1)交B 是可测集,矛盾。 |
|