由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Mathematics版 - Can anyone help with this problem?
相关主题
微分、积分的推广[转贴]庞加莱猜想-附录三: 低维拓扑
(zz)Heroes in My Heart (16)一个简单的常微分方程求通解
Re: 聊聊数学的分支吧一个基本的微分性质
[转载]Re: [转载] 数学的精神----(二)!!!微分方程问题求解!!!
Re: 想了解一下关于现代几何的分类中国数学人传记连载(1):李华宗
[转载] 一个笑话,不许peng,哈哈中国数学人传记连载(9):丁夏畦
[转载]侃侃计算数学 (微分方程数值解)请推荐微分几何教材或著作
[转贴]庞加莱猜想-造化爱几何[合集] 一个微分几何的问题
相关话题的讨论汇总
话题: f1话题: f2话题: df话题: infinity话题: problem
进入Mathematics版参与讨论
1 (共1页)
b*****e
发帖数: 88
B****n
发帖数: 11290
2
在一些regular的條件下 這兩個應該一樣巴 兩邊同時對a微分 只要微分和積分可以交


【在 b*****e 的大作中提到】
: Please see the link
: http://math.stackexchange.com/questions/827318/please-help-comp
: Thanks.

b*****e
发帖数: 88
3
请问,你能说详细点吗
给定上面那个等式,because a+t < a+b(a)+t,所以看起来有这个不等关系呀。
就是不知道如何能证明.
can any 大牛 help?
Thanks.

【在 B****n 的大作中提到】
: 在一些regular的條件下 這兩個應該一樣巴 兩邊同時對a微分 只要微分和積分可以交
: 換

x********y
发帖数: 189
4
两个distribution functions的support是[0,c]???
这个本身就有问题,distribution function的support只可能是[constant,+infinity).
另外,你的first order stochastic dominance看起来给的也不对,并不是多任意的t
,而是对某些t (如果我理解正确的话),你所给的和我所说的差很多。
你先把这些写清楚了我再给你看怎么做一下。。。
b*****e
发帖数: 88
5
distribution function's support could be [constant,constant], for example,
uniform distribution on [a, b].
first order stochastic dominance requires "less than or equal to" and "less
than" for some t. Strictly speaking, the condition given is a little bit
stronger than FOSD.
To be more specific, let's assume two cumulative distribution functions, G1(
t) and G2(t), on [0,c] are two strictly increasing functions. Then, let F1(t
)=G1(t)*G2(t) and F2(t)=G1(t), which leads to F1(t) Thanks.

infinity).
t

【在 x********y 的大作中提到】
: 两个distribution functions的support是[0,c]???
: 这个本身就有问题,distribution function的support只可能是[constant,+infinity).
: 另外,你的first order stochastic dominance看起来给的也不对,并不是多任意的t
: ,而是对某些t (如果我理解正确的话),你所给的和我所说的差很多。
: 你先把这些写清楚了我再给你看怎么做一下。。。

x********y
发帖数: 189
6
Again, how can a cdf's support be [constant,constant]???
The definition of a cfd is F(x)=P(X less or equal x), i.e. F(infinity)=1!!!
Anyway, I can guess what you meant, your "support" is actually the non-
constant part.
The result you want to claim is not right! A counterexample would be
F1(t)=delta_0(t)
F2(t)=1/2 delta_0(t)+ 1/2 delta_c(t)
Wisely choose a small c in order to make your b<0 and b+c<0.
b*****e
发帖数: 88
7
Yes, you are right on "support".
I am not sure I got your counter example. what kind of function is delta_0(t
)? Also, please notice that b(a) must be positive from the equality
condition, since integration of 1/(a+t)*d(F1(t)-F2(t)) is negative (use
integration by parts, and 1/(a+t) is decreasing in t).
Could you elaborate more? Thanks.

【在 x********y 的大作中提到】
: Again, how can a cdf's support be [constant,constant]???
: The definition of a cfd is F(x)=P(X less or equal x), i.e. F(infinity)=1!!!
: Anyway, I can guess what you meant, your "support" is actually the non-
: constant part.
: The result you want to claim is not right! A counterexample would be
: F1(t)=delta_0(t)
: F2(t)=1/2 delta_0(t)+ 1/2 delta_c(t)
: Wisely choose a small c in order to make your b<0 and b+c<0.

x********y
发帖数: 189
8
delta_0(t)=1 if t=0, and =0 if t not equal to 0.
I don't understand why you need to consider the integration of 1/(a+t)*d(F1(
t)-F2(t))???
The thing is that you never know if d(F1(t)-F2(t))>0...
Just try what I mentioned to you, and work it out. I can't write everything
down! Put some effort yourself, ok?
B********e
发帖数: 10014
9
that's not what he wants.
any cdf F here satisfies F(0)=0, F(c)=1.
I think the answer is positive.

F1(
everything

【在 x********y 的大作中提到】
: delta_0(t)=1 if t=0, and =0 if t not equal to 0.
: I don't understand why you need to consider the integration of 1/(a+t)*d(F1(
: t)-F2(t))???
: The thing is that you never know if d(F1(t)-F2(t))>0...
: Just try what I mentioned to you, and work it out. I can't write everything
: down! Put some effort yourself, ok?

B********e
发帖数: 10014
10
数值试了试,貌似什么情况都可以发生。
examples: take c=1, a=10, denote A1,A2 the integrals of the square functions
corresponding to F1 and F2.
1.
F1=t, F2=t+1/2t*(1-t),
b=0.0826, then
A1=0.00909091>0.00909024=A2;
2.
F1=t-1/2t(1-t),
F2=t,
b=0.08392,
A1=0.00894654<0.008947=A2.
也试了a=20, 100,一样结果。
感觉a=100已经足够大了吧?lz不妨验算一下,看看是否解决问题。

【在 B********e 的大作中提到】
: that's not what he wants.
: any cdf F here satisfies F(0)=0, F(c)=1.
: I think the answer is positive.
:
: F1(
: everything

相关主题
[转载] 一个笑话,不许peng,哈哈[转贴]庞加莱猜想-附录三: 低维拓扑
[转载]侃侃计算数学 (微分方程数值解)一个简单的常微分方程求通解
[转贴]庞加莱猜想-造化爱几何一个基本的微分性质
进入Mathematics版参与讨论
b*****e
发帖数: 88
11
Thanks, you are right.
I have been able to show that if b>2*c, then the inequality holds. Also
notice that as 'a' goes to infinity, b(a) has to go to infinity as well. So,
as 'a' is large, the inequality holds.

functions

【在 B********e 的大作中提到】
: 数值试了试,貌似什么情况都可以发生。
: examples: take c=1, a=10, denote A1,A2 the integrals of the square functions
: corresponding to F1 and F2.
: 1.
: F1=t, F2=t+1/2t*(1-t),
: b=0.0826, then
: A1=0.00909091>0.00909024=A2;
: 2.
: F1=t-1/2t(1-t),
: F2=t,

B********e
发帖数: 10014
12
sorry, i don't see b goes to infinity as a does so.

So,

【在 b*****e 的大作中提到】
: Thanks, you are right.
: I have been able to show that if b>2*c, then the inequality holds. Also
: notice that as 'a' goes to infinity, b(a) has to go to infinity as well. So,
: as 'a' is large, the inequality holds.
:
: functions

b*****e
发帖数: 88
13
if b does not go to infinity (so goes to a finite number), then 1/(a+t) is
almost equal to 1/(a+b+t) as a is extremely large. Then, since F1(t) the first equality cannot hold (i.e., the integration of 1/(a+t)*dF1(t) <
the integration of 1/(a+b+t)*dF2(t)), right?

【在 B********e 的大作中提到】
: sorry, i don't see b goes to infinity as a does so.
:
: So,

D******g
发帖数: 125
14
xxxy的意思是density function 换成distribution function就是
F_1= 0 when x F_2=0 when x<0, F_2= 1/2 when 0<=x 然后很容易验证楼主的不等式不对

【在 B********e 的大作中提到】
: that's not what he wants.
: any cdf F here satisfies F(0)=0, F(c)=1.
: I think the answer is positive.
:
: F1(
: everything

y***s
发帖数: 23
15
The answer seems NO.
Let X_2 be uniform on (0,1), and X_1=X_2+1. Thus F_1(t)=t-1 on (1,2) and 0
otherwise.
F_2(t)=t on (0,1) and 0 otherwise. And let c=2.
\int_0^c 1/(a+t) dF_1(t) =log (a+2)/(a+1)
\int_0^c 1(a+b+c) dF_2(t) =log (a+b+1)/(a+b);
Hence the first equation will entail b=1.
But
\int_0^c 1/(a+t)^2 dF_1(t) =1/(a+1) -1/(a+2)
equals
\int_0^c 1/(a+b+t)^2 dF_2(t) =1/(a+1) -1/(a+2).
B********e
发帖数: 10014
16
no.
let c=1, F1=t^2, F2=t. You can show b->1/6, as a->\infty.

,

【在 b*****e 的大作中提到】
: if b does not go to infinity (so goes to a finite number), then 1/(a+t) is
: almost equal to 1/(a+b+t) as a is extremely large. Then, since F1(t): the first equality cannot hold (i.e., the integration of 1/(a+t)*dF1(t) <
: the integration of 1/(a+b+t)*dF2(t)), right?

b*****e
发帖数: 88
17
in this case, as it can be shown, b=((1+a)*(1+1/a)^(2*a)-a*e^2)/(e^2-(1+1/a)
^(2*a)) > 0.
when a=10000, b=0.166647431218232 (about 1/6), but when a=10^7, b=1.
181533089297586e+005
I used matlab to do the calculation. It seems matlab has some problem with
the calculation since I could get negative b by trying some a values (which
is wrong since b has to be positive). to give an example, we know (1+1/a)^(a
) goes to e as a goes to infinity, but matlab would give 1 as a=10^16.

【在 B********e 的大作中提到】
: no.
: let c=1, F1=t^2, F2=t. You can show b->1/6, as a->\infty.
:
: ,

B********e
发帖数: 10014
18
that's truncation error
http://www.wolframalpha.com/input/?i=limit+of+%28%281%2Ba%29*%2

a)
which
(a

【在 b*****e 的大作中提到】
: in this case, as it can be shown, b=((1+a)*(1+1/a)^(2*a)-a*e^2)/(e^2-(1+1/a)
: ^(2*a)) > 0.
: when a=10000, b=0.166647431218232 (about 1/6), but when a=10^7, b=1.
: 181533089297586e+005
: I used matlab to do the calculation. It seems matlab has some problem with
: the calculation since I could get negative b by trying some a values (which
: is wrong since b has to be positive). to give an example, we know (1+1/a)^(a
: ) goes to e as a goes to infinity, but matlab would give 1 as a=10^16.

b*****e
发帖数: 88
19
Thanks!

【在 B********e 的大作中提到】
: that's truncation error
: http://www.wolframalpha.com/input/?i=limit+of+%28%281%2Ba%29*%2
:
: a)
: which
: (a

1 (共1页)
进入Mathematics版参与讨论
相关主题
[合集] 一个微分几何的问题Re: 想了解一下关于现代几何的分类
[合集]关于田刚老师和我的一件事的说明[转载] 一个笑话,不许peng,哈哈
关于这个方程的一个问题[转载]侃侃计算数学 (微分方程数值解)
请问此偏微分方程的解析解[转贴]庞加莱猜想-造化爱几何
微分、积分的推广[转贴]庞加莱猜想-附录三: 低维拓扑
(zz)Heroes in My Heart (16)一个简单的常微分方程求通解
Re: 聊聊数学的分支吧一个基本的微分性质
[转载]Re: [转载] 数学的精神----(二)!!!微分方程问题求解!!!
相关话题的讨论汇总
话题: f1话题: f2话题: df话题: infinity话题: problem