T*******x 发帖数: 8565 | 1 let
A(n)=n * sum 1/(p*q),
where n is positive integer, n>=2, sum over all ordered pair (p,q) such that
p,q are positive integers and p+q=n.
let
H(n)=1+1/2+1/3+...+1/n
证明:
limit A(n)-2*H(n) = 0 as n goes to infinity. | T*******x 发帖数: 8565 | 2 这个题出简单了。
that
【在 T*******x 的大作中提到】 : let : A(n)=n * sum 1/(p*q), : where n is positive integer, n>=2, sum over all ordered pair (p,q) such that : p,q are positive integers and p+q=n. : let : H(n)=1+1/2+1/3+...+1/n : 证明: : limit A(n)-2*H(n) = 0 as n goes to infinity.
| B*Q 发帖数: 25729 | | T*******x 发帖数: 8565 | 4 你是马工?
【在 B*Q 的大作中提到】 : 有马工转千老的么?
| T*******x 发帖数: 8565 | 5 A(n)=2H(n-1)
that
【在 T*******x 的大作中提到】 : let : A(n)=n * sum 1/(p*q), : where n is positive integer, n>=2, sum over all ordered pair (p,q) such that : p,q are positive integers and p+q=n. : let : H(n)=1+1/2+1/3+...+1/n : 证明: : limit A(n)-2*H(n) = 0 as n goes to infinity.
| B*Q 发帖数: 25729 | | T*******x 发帖数: 8565 | 7 你试试?
【在 B*Q 的大作中提到】 : 娃儿数学竞赛题?
|
|