h*i 发帖数: 3446 | 1 【 以下文字转载自 JobHunting 讨论区 】
发信人: hci (海螺子), 信区: JobHunting
标 题: DNN就是hype
发信站: BBS 未名空间站 (Fri Feb 19 15:11:57 2016, 美东)
”同一算法解决很多不同的问题“, 换个说法,其实就是overfit。尼玛上亿的参数,
当然啥都能fit, 但是,换个数据就都不能用了,要重新训练。学的也都是些奇怪的特
征,没有什么能重用的东西,和人知道的概念更是不沾边。
总的说来,现在DNN解决的都是些人本身就觉得简单的问题,比如知觉,模式识别啥的
,而且必须要有海量的现成的ground truth.人觉得难的问题,大多是没有现成ground
truth的。不说别的,最简单的常识推理,DNN就搞不定。
视觉,听觉, 这些知觉任务,不懂计算机的人都觉得很简单,因为比较而言,它就是人
能干的最简单的任务。
那下棋是不是高大上的任务?其实不是,学过认知心理学的都知道,下棋,要下得好,
其实也主要是知觉任务,就是靠记忆和识别模式,用所谓chunking的策略,一盘棋,常
人看有很多信息,记不住,训练过的棋手一看,就一点点信息,很容易全部复盘。这不
是因为棋手记忆力超群,而是对她来说,一盘棋就是几个简单模式,很容易记。所以训
练过的棋手能同时与十来个常人下,一路走过去,一盘棋喵一眼立马下子,为啥?因为
高手与常人下棋不用任何复杂推理,就是简单的模式识别。
视觉,听觉, 下棋,等等,这些简单的知觉任务,在有海量的训练数据的条件下,计算
机现在靠傻算和蛮力能解决一些了,但由此就说要skynet了,这不是瞎扯是什么?随便
翻开一本心理学101教课书,讲知觉的可能用两三章,但人的功能,在知觉以上还有那
么多,大半本书,哪一个功能AI能搞定了?
现在DNN主要是个工程领域,而不是啥高达上的理论研究。某些追星族人云亦云,没有
自己的头脑,argue from authority, lack perspective。
最后,DNN只是一个工具盒里的工具,根据需要来应用。如果能有海量的
ground truth,任务也比较单一,不需要太多customization, 也没有很严格的空间性
能需求,没有malicious attack http://arxiv.org/abs/1412.1897, DNN很好。但是,符合这些条件的用例有多少?也许还能开发出一些新的用例
,但大体来看,适用范围还是很有限的。 |
|