由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - [合集] how to calculate this? (a math question)
相关主题
一道概率题Gaussian Integral
[合集] Probability Question问个概率题
today's interview○○○ 求证一个随机积分的收敛性 ○○○
local martingale【Brownian Motion】一道题求解
[合集] What's the integration of问两个GS面试题
遇到一个看是很简单的ODE问题问个pricing的题
一道题CS开始发面试了
a math problem[合集] interview question 4
相关话题的讨论汇总
话题: sum话题: mar话题: thu话题: calculate
进入Quant版参与讨论
1 (共1页)
b***k
发帖数: 2673
1
☆─────────────────────────────────────☆
xiaoxiaokuan (小小矿) 于 (Thu Mar 6 12:49:33 2008) 提到:
sum of n^2*(1/2)^n, n=1 to infinity
thanks
☆─────────────────────────────────────☆
dArtagnan (达达尼昂) 于 (Thu Mar 6 12:57:43 2008) 提到:
let the sum be S
R = S - 1/2 S = 1*(1/2) + \sum [(n+1)^2 - n^2]*(1/2)^(n+1)]
= 1*(1/2) + \sum (2n+1) (1/2)^(n+1)
and then calculate
R - 1/2 R

☆─────────────────────────────────────☆
xiaoxiaokuan (小小矿) 于 (Thu Mar 6 12:59:09 2008) 提到:
wow, thanks!
☆───────────
r***w
发帖数: 35
2
No need to use maple, it is elementary, integrate the function f(x)=(1/2)^2x
^2 on [1,\infty], by L'Hospital's rule, you can get
\sum=[(ln2)^2+2*ln2-2]/[2*(ln2)^3]
Or, sum x^n=1/(1-x) (geometric)
1 (共1页)
进入Quant版参与讨论
相关主题
[合集] interview question 4[合集] What's the integration of
[合集] Gaussian积分函数如何证明?遇到一个看是很简单的ODE问题
问两道probability的题一道题
一道概率题a math problem
一道概率题Gaussian Integral
[合集] Probability Question问个概率题
today's interview○○○ 求证一个随机积分的收敛性 ○○○
local martingale【Brownian Motion】一道题求解
相关话题的讨论汇总
话题: sum话题: mar话题: thu话题: calculate