由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - 请教一个stochastic integral的问题
相关主题
a simple stochastic process problem that I do not get (转载)发几道今天的海选考试题
弱问两个问题 (stochastic calculus)问一个Shreve V2上的问题
【Stochastic Integral】一个简单问题?我来推荐Stochastic Calculus的书
一个stochastic的小问题[合集] Stochastic Calculus for Finance II: Continuous Time Models,
one question urgent这道题, 我做得对马?(stochastic process)
[合集] 新手问题(stochastic calculus)[合集] 一个随机过程题
brownian motion, got an answer but do not feel confident. H面试题目,Stochastic calculus求教
一道题a probability question
相关话题的讨论汇总
话题: int话题: ds话题: var话题: integral话题: stochastic
进入Quant版参与讨论
1 (共1页)
c******n
发帖数: 4
1
W(t) is a Brownian motion. Calculate E(exp(int[t,T]W(s)ds))。
也就是 expectation of exponential of 从t到T的W(t)的积分。
Thanks!
g********5
发帖数: 62
2
Let X = int(t,T)W(s)ds
X is random variable with Normal( mean = 0, var = ... )
mean(X) = 0
Var(X) = E[X^2] = t(T-t)^2 + [(T-t)^3]/3
E ( e^X ) = exp{ mean(X) + var(X)/2 }
c******n
发帖数: 4
3

~~~~~~~ Could you explain more about the E[X^2] = t(T-t)^2 + [(T-t)^3]/3?
Thanks!

【在 g********5 的大作中提到】
: Let X = int(t,T)W(s)ds
: X is random variable with Normal( mean = 0, var = ... )
: mean(X) = 0
: Var(X) = E[X^2] = t(T-t)^2 + [(T-t)^3]/3
: E ( e^X ) = exp{ mean(X) + var(X)/2 }

h*****u
发帖数: 38
4
Let X = int(t,T)W(s)ds
E[x]=W(t)(T-t)
E[x^2]=E[int(t,T)W(s)ds*int(t,T)W(s)ds]=2*E[int(t,T)int(t,u)W(u)W(v)dvdu]
=2*int(t,T)int(t,u)E[(W(u)-W(t))(W(v)-W(t))]+W(t)^2 dv du
=1/3(T-t)^3+W(t)^2(T-t)^2
=>Var{X}=1/3(T-t)^3
1 (共1页)
进入Quant版参与讨论
相关主题
a probability questionone question urgent
Stochastic Differential Equation 1[合集] 新手问题(stochastic calculus)
面试题,求covariance(stochastic calculus)brownian motion, got an answer but do not feel confident. H
cal expected value一道题
a simple stochastic process problem that I do not get (转载)发几道今天的海选考试题
弱问两个问题 (stochastic calculus)问一个Shreve V2上的问题
【Stochastic Integral】一个简单问题?我来推荐Stochastic Calculus的书
一个stochastic的小问题[合集] Stochastic Calculus for Finance II: Continuous Time Models,
相关话题的讨论汇总
话题: int话题: ds话题: var话题: integral话题: stochastic