由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - 一道随机题
相关主题
问个概率问题弱问两个问题 (stochastic calculus)
谁能再帮看看这道题?谢了!请问:关于market risk VaR models
随机过程问题小测验问几个Morgan Stanley的面试题目
大家来做题面试题目,Stochastic calculus求教
分享一些面试 笔试题Bloomberg的BVAL Quant Developer面试
martingale题目,晕了一个随机题
一道新的布朗题cal expected value
[合集] 一道新的布朗题电面 高盛ISG in IMD
相关话题的讨论汇总
话题: var话题: int话题: dt话题: 2dt话题: dy
进入Quant版参与讨论
1 (共1页)
v*****n
发帖数: 22
1
Find the linear correlation coefficient betweenX(T) and Y (T) whereX(t)=
W(t) and Y (t) = int_0_t{W(s)}ds. W(t) is a Brownian motion process and
assume W(0) = 0.
J*******g
发帖数: 267
2
var(X(t)) = t
var(Y(t)) = t^3/3
cov(X(t), Y(t)) = t^2/2
so, corr(X(t), Y(t)) = sqrt(3)/2

【在 v*****n 的大作中提到】
: Find the linear correlation coefficient betweenX(T) and Y (T) whereX(t)=
: W(t) and Y (t) = int_0_t{W(s)}ds. W(t) is a Brownian motion process and
: assume W(0) = 0.

c******r
发帖数: 300
3
sorry wrong calculation of var(y(t))
d(X(t)Y(t)) = W(t)^2dt + Y(t)dW(t)
=>
X(t)Y(t) = \int_0^t W(s)^2ds + \int_0^tY(t)dW(t)
=>
E(X(t)Y(t)) = \int_0^t sds = t^2/2
=>
Cov(X(t),Y(t))=t^2/2
Var(X(t)) = t, Var(Y(t)) = E(Y(t)^2)
dY(t)^2 = 2Y(t)dY(t) + W(t)^2dt
= 2Y(t)W(t)dt + W(t)^2 dt
=>
Y(t)^2 = 2 \int_0^t Y(t)W(t)dt
=> E(Y(t)^2) = 2 \int_0^t E(Y(t)W(t))dt = t^3/3
=> Var(Y(t)) = t^3/3
Or you can use the definition of Riemann integral to solve the problem.

【在 v*****n 的大作中提到】
: Find the linear correlation coefficient betweenX(T) and Y (T) whereX(t)=
: W(t) and Y (t) = int_0_t{W(s)}ds. W(t) is a Brownian motion process and
: assume W(0) = 0.

v*****n
发帖数: 22
4
Thanks for the detailed solution.
Uncleared on one equation.

sorry wrong calculation of var(y(t))
d(X(t)Y(t)) = W(t)^2dt + Y(t)dW(t)
=>
X(t)Y(t) = \int_0^t W(s)^2ds + \int_0^tY(t)dW(t)
=>
E(X(t)Y(t)) = \int_0^t sds = t^2/2
=>
Cov(X(t),Y(t))=t^2/2
Var(X(t)) = t, Var(Y(t)) = E(Y(t)^2)
dY(t)^2 = 2Y(t)dY(t) + W(t)^2dt
~~~~~~~~~~~
Where is that from? Shouldn't it be 1/2W(t)^2dtdt and
then=0?
= 2Y(t)W(t)dt + W(t)^2 dt
=>
Y(t)^2 = 2 \int_0^t Y(t)W(t)dt
=> E

【在 c******r 的大作中提到】
: sorry wrong calculation of var(y(t))
: d(X(t)Y(t)) = W(t)^2dt + Y(t)dW(t)
: =>
: X(t)Y(t) = \int_0^t W(s)^2ds + \int_0^tY(t)dW(t)
: =>
: E(X(t)Y(t)) = \int_0^t sds = t^2/2
: =>
: Cov(X(t),Y(t))=t^2/2
: Var(X(t)) = t, Var(Y(t)) = E(Y(t)^2)
: dY(t)^2 = 2Y(t)dY(t) + W(t)^2dt

v*****n
发帖数: 22
5
Thanks.
Always right but not in detail. :)

【在 J*******g 的大作中提到】
: var(X(t)) = t
: var(Y(t)) = t^3/3
: cov(X(t), Y(t)) = t^2/2
: so, corr(X(t), Y(t)) = sqrt(3)/2

1 (共1页)
进入Quant版参与讨论
相关主题
电面 高盛ISG in IMD分享一些面试 笔试题
两个布朗运动的correlation一定为常数吗martingale题目,晕了
david li 的模型对这次 次债危机的具体成因?一道新的布朗题
Junior Risk Quants Opening (Shanghai)[合集] 一道新的布朗题
问个概率问题弱问两个问题 (stochastic calculus)
谁能再帮看看这道题?谢了!请问:关于market risk VaR models
随机过程问题小测验问几个Morgan Stanley的面试题目
大家来做题面试题目,Stochastic calculus求教
相关话题的讨论汇总
话题: var话题: int话题: dt话题: 2dt话题: dy