由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - Matrix question
相关主题
问个随机积分的问题问个题,算法?矩阵?
Is this true?af0215面经中的一道题
○○○ 求证一个随机积分的收敛性 ○○○【Brownian Motion】一道题求解
问两道题怎么说明两边有吸收壁的布朗运动的停止时间的期望有限?
看看这道题(probability)请教面试题Knight Capital
两道面试题(math+algorithm)问个PCA的问题,很困惑
[合集] 一个弱问题:What does Brownian Motion converge to?Algorithm of taking the i-th stochastic root of transition matrix
问一个convergence of random variables的问题一道题(math)
相关话题的讨论汇总
话题: matrix话题: infty话题: ji话题: pp话题: converge
进入Quant版参与讨论
1 (共1页)
j**********7
发帖数: 4
1
Consider a matrix $J$. every eigenvalue of $J$ has positive real part.
Now let us consider infinite product of (1-J/n). Does
infinite product converges? and how about the converge rate?
Is there anyone can give some advice? thanks!
p*****k
发帖数: 318
2
for powers of matrix, you normally want to diagonalize the matrix first:
say P'JP = diag{j1,j2,....jm}, where P'=P^(-1), and j's are the eigenvalues of J.
if i understand your question correctly, you want to compute the limit of (I-J/n)^n when n->infty (where I is the identity matrix)?
insert bunch of PP'(=I) in the product:
(I-J/n)^n = PP'(I-J/n)PP'(I-J/n)...PP'(I-J/n)PP'=P{[P'(I-J/n)P]^n}P'
=P[diag{(1-j1/n)^n,(1-j2/n)^n,...,(1-jm/n)^n}]P'
so seems to me the limit when n->infty is:
P[diag{e^(-j
j**********7
发帖数: 4
3
Many thanks! It is quite clear and correct.
You are so kind :)

eigenvalues of J.
(I-J/n)^n when n->infty (where I is the identity matrix)?
J is diagonalizable http://en.wikipedia.org/wiki/Diagonalizable, the above procedure should work, no?

【在 p*****k 的大作中提到】
: for powers of matrix, you normally want to diagonalize the matrix first:
: say P'JP = diag{j1,j2,....jm}, where P'=P^(-1), and j's are the eigenvalues of J.
: if i understand your question correctly, you want to compute the limit of (I-J/n)^n when n->infty (where I is the identity matrix)?
: insert bunch of PP'(=I) in the product:
: (I-J/n)^n = PP'(I-J/n)PP'(I-J/n)...PP'(I-J/n)PP'=P{[P'(I-J/n)P]^n}P'
: =P[diag{(1-j1/n)^n,(1-j2/n)^n,...,(1-jm/n)^n}]P'
: so seems to me the limit when n->infty is:
: P[diag{e^(-j

i****e
发帖数: 78
4
maybe the question is (1-J/n)^m as m-> infty? then positive real parts may
be related to the convergence and rate.

eigenvalues of J.
(I-J/n)^n when n->infty (where I is the identity matrix)?
J is diagonalizable http://en.wikipedia.org/wiki/Diagonalizable, the above procedure should work, no?

【在 p*****k 的大作中提到】
: for powers of matrix, you normally want to diagonalize the matrix first:
: say P'JP = diag{j1,j2,....jm}, where P'=P^(-1), and j's are the eigenvalues of J.
: if i understand your question correctly, you want to compute the limit of (I-J/n)^n when n->infty (where I is the identity matrix)?
: insert bunch of PP'(=I) in the product:
: (I-J/n)^n = PP'(I-J/n)PP'(I-J/n)...PP'(I-J/n)PP'=P{[P'(I-J/n)P]^n}P'
: =P[diag{(1-j1/n)^n,(1-j2/n)^n,...,(1-jm/n)^n}]P'
: so seems to me the limit when n->infty is:
: P[diag{e^(-j

H****y
发帖数: 19
5
It's not (I-J/n)^n when n->infty, it should be Prod_n^infty (I-J/n)
If you take a ln, then the i^th diagonal element becomes Sum_n ln(1-Ji/n).
If you approximate ln(1-Ji/n) by -Ji/n, then it becomes Sum_n (-Ji/n), which
does not converge.
One can confirm this argument with Mathematica, using Ji=1, and calculate
Sum_n ln(1-1/n). You'll find the sum does not converge.
p*****k
发帖数: 318
6
thanks. the question makes sense now.
but you sure it does not converge? seems to me you are saying the log of
this infinite product is going to -\infty, so the product converges to zero,
no?
1 (共1页)
进入Quant版参与讨论
相关主题
一道题(math)看看这道题(probability)
Bloomberg的BVAL Quant Developer面试两道面试题(math+algorithm)
[合集] 一道算法题[合集] 一个弱问题:What does Brownian Motion converge to?
再问道题目问一个convergence of random variables的问题
问个随机积分的问题问个题,算法?矩阵?
Is this true?af0215面经中的一道题
○○○ 求证一个随机积分的收敛性 ○○○【Brownian Motion】一道题求解
问两道题怎么说明两边有吸收壁的布朗运动的停止时间的期望有限?
相关话题的讨论汇总
话题: matrix话题: infty话题: ji话题: pp话题: converge