由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - 抛硬币算uniform题
相关主题
面试题,老题gs superday后的悲剧+面试题目
一道老题,谢谢问个关于simulation的问题?
也问一道题请问 Goldman Sachs Private Wealth Management 电面会面什么呢?
[合集] 请教一个概率题一个很简单的面试问题
请教一个关于copula的问题请教一道题
Two interview questions from knight capital请问什么是Bernoulli option?
等bus的问题Quant面试问题
请教一道面试题[合集] Quant面试问题
相关话题的讨论汇总
话题: uniform话题: dice话题: generate话题: random话题: 硬币
进入Quant版参与讨论
1 (共1页)
g*******s
发帖数: 59
1
one fair dice, how to use it to generate uniform random variable?
c******r
发帖数: 300
2
U[0,1] = \sum\limits_{i=1}B_i/2^i
where B_i are i.i.d Bernoulli. This is not "efficient" though, a slightly
better one is
U[0,1] = \sum\limits_{i=1}D_i/6^i
where the D_i is the result of rolling the dice.
anyway, you need countably infinite discrete random variables to generate
some continuous distribution (considering the entropy)

【在 g*******s 的大作中提到】
: one fair dice, how to use it to generate uniform random variable?
m****o
发帖数: 114
3
i think he is talking about finite and discrete, not continuous

【在 c******r 的大作中提到】
: U[0,1] = \sum\limits_{i=1}B_i/2^i
: where B_i are i.i.d Bernoulli. This is not "efficient" though, a slightly
: better one is
: U[0,1] = \sum\limits_{i=1}D_i/6^i
: where the D_i is the result of rolling the dice.
: anyway, you need countably infinite discrete random variables to generate
: some continuous distribution (considering the entropy)

e****d
发帖数: 333
4
I agree. several simulation books explain the algorithm for this problem. i
don't remember exactly. long time ago.
应该是 BYRON 那本书后一道习题。原题记得是生成0-9999的随机数。很久以前了。

【在 m****o 的大作中提到】
: i think he is talking about finite and discrete, not continuous
1 (共1页)
进入Quant版参与讨论
相关主题
[合集] Quant面试问题请教一个关于copula的问题
[合集] the dice gameTwo interview questions from knight capital
[合集] FDM vs FEM in SDE等bus的问题
[合集] 一个关于金融数学图书的目录zz请教一道面试题
面试题,老题gs superday后的悲剧+面试题目
一道老题,谢谢问个关于simulation的问题?
也问一道题请问 Goldman Sachs Private Wealth Management 电面会面什么呢?
[合集] 请教一个概率题一个很简单的面试问题
相关话题的讨论汇总
话题: uniform话题: dice话题: generate话题: random话题: 硬币