由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - Ordering a sequence (2) (转载)
相关主题
来一道题 (转载)[合集] splitting problem
某hedge fund面试题一道a question about VAR (转载)
Interview question help --set partionold topic, MFE program, go or not to go?
[合集] 问道题[合集] 面试问题请教
一道题(math)is random combination of Gaussian still Gaussian?
one puzzle: hat problem出个题
看看这道题(probability)最近拿到的一些面试题(综合)
问个掷骰子的概率问题 (转载)BS equation when the option price is 1/S
相关话题的讨论汇总
话题: ordering话题: zj话题: sequence话题: now话题: yj
进入Quant版参与讨论
1 (共1页)
D**u
发帖数: 204
1
【 以下文字转载自 Mathematics 讨论区 】
发信人: DuGu (火工头陀), 信区: Mathematics
标 题: Ordering a sequence (2)
发信站: BBS 未名空间站 (Wed Dec 16 12:17:39 2009, 美东)
Let x1,...xn,y1,...,yn be 2n distinct real numbers, and xi+xj is not equal
to yk+yl for any i,j,k,l.
Prove that you can properly reordering x1,...,xn to z1,...zn, such that
(zi + zj - yi - yj)*(zi - zj)*(yi - yj) > 0
for all i and j.
p*****k
发帖数: 318
2
DuGu, not sure if I missed anything, but cannot you just take
x_i'=exp(x_i), and apply the solution last time?
http://www.mitbbs.com/article_t/Quant/31214785.html
D**u
发帖数: 204
3
That's correct, x_i'=exp(x_i) will work, so this is essentially a (trivial)
generalization of the previous problem.
What puzzels me is that this new question looks simpler (or "cleaner") than
last one (because we now only compare SUMS "zi+zj vs yi+yj", instead of
PRODUCTS "zi*zj vs yi*yj"), but the solution looks more complicated than
last one(because we now need an extra transformation x_i'=exp(x_i)).
I am wondering if there is a more straight-forward solution, which does not
rely on the soluti

【在 p*****k 的大作中提到】
: DuGu, not sure if I missed anything, but cannot you just take
: x_i'=exp(x_i), and apply the solution last time?
: http://www.mitbbs.com/article_t/Quant/31214785.html

w*****e
发帖数: 197
4
Notice the choice of {y_i} is arbitrary. So we can assume y_i=i.
Now we want to make ( z_i + z_j - i - j ) ( z_i - z_j ) ( i - j ) > 0
for all i and j.
Now consider this function M(P)=sum( i * z_i * z_i ) - sum( i * i * z_i )
over i,
where P denotes a permutation of {z_i}.
If we switch two numbers z_i and z_j here, the overall change to M(P) - M(P'
) is:
( i - j ) * ( z_i * z_i - z_j * z_j ) - ( i * i - j * j )( z_i - z_j )
which is
( i - j ) * ( z_i - zj ) ( z_i + z_j - i - j ).
Volla, we got t

【在 D**u 的大作中提到】
: That's correct, x_i'=exp(x_i) will work, so this is essentially a (trivial)
: generalization of the previous problem.
: What puzzels me is that this new question looks simpler (or "cleaner") than
: last one (because we now only compare SUMS "zi+zj vs yi+yj", instead of
: PRODUCTS "zi*zj vs yi*yj"), but the solution looks more complicated than
: last one(because we now need an extra transformation x_i'=exp(x_i)).
: I am wondering if there is a more straight-forward solution, which does not
: rely on the soluti

w*****e
发帖数: 197
5
Never mind, I checked the original post and it indeed comes out such an
optimization problem. :)

P'

【在 w*****e 的大作中提到】
: Notice the choice of {y_i} is arbitrary. So we can assume y_i=i.
: Now we want to make ( z_i + z_j - i - j ) ( z_i - z_j ) ( i - j ) > 0
: for all i and j.
: Now consider this function M(P)=sum( i * z_i * z_i ) - sum( i * i * z_i )
: over i,
: where P denotes a permutation of {z_i}.
: If we switch two numbers z_i and z_j here, the overall change to M(P) - M(P'
: ) is:
: ( i - j ) * ( z_i * z_i - z_j * z_j ) - ( i * i - j * j )( z_i - z_j )
: which is

D**u
发帖数: 204
6
This is an excellent proof, which is very clean. It is better than the one
that the problem was originally designed for.

P'

【在 w*****e 的大作中提到】
: Notice the choice of {y_i} is arbitrary. So we can assume y_i=i.
: Now we want to make ( z_i + z_j - i - j ) ( z_i - z_j ) ( i - j ) > 0
: for all i and j.
: Now consider this function M(P)=sum( i * z_i * z_i ) - sum( i * i * z_i )
: over i,
: where P denotes a permutation of {z_i}.
: If we switch two numbers z_i and z_j here, the overall change to M(P) - M(P'
: ) is:
: ( i - j ) * ( z_i * z_i - z_j * z_j ) - ( i * i - j * j )( z_i - z_j )
: which is

s****n
发帖数: 700
7
我在想hedge fund的人问这些问题和他们控制orders有什么关联呢?

P'

【在 w*****e 的大作中提到】
: Notice the choice of {y_i} is arbitrary. So we can assume y_i=i.
: Now we want to make ( z_i + z_j - i - j ) ( z_i - z_j ) ( i - j ) > 0
: for all i and j.
: Now consider this function M(P)=sum( i * z_i * z_i ) - sum( i * i * z_i )
: over i,
: where P denotes a permutation of {z_i}.
: If we switch two numbers z_i and z_j here, the overall change to M(P) - M(P'
: ) is:
: ( i - j ) * ( z_i * z_i - z_j * z_j ) - ( i * i - j * j )( z_i - z_j )
: which is

D**u
发帖数: 204
8
不错的想法。不是面试题。

【在 s****n 的大作中提到】
: 我在想hedge fund的人问这些问题和他们控制orders有什么关联呢?
:
: P'

1 (共1页)
进入Quant版参与讨论
相关主题
BS equation when the option price is 1/S一道题(math)
前台需要算PnL吗?one puzzle: hat problem
CTC interview 2nd round phone interview看看这道题(probability)
请教一下commodity 的问题问个掷骰子的概率问题 (转载)
来一道题 (转载)[合集] splitting problem
某hedge fund面试题一道a question about VAR (转载)
Interview question help --set partionold topic, MFE program, go or not to go?
[合集] 问道题[合集] 面试问题请教
相关话题的讨论汇总
话题: ordering话题: zj话题: sequence话题: now话题: yj