boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - 太冷清了 来个题吧
相关主题
问一道面试题(zz)
Asymmetric Brownian Motion question discussion
问个正态分布的面试题
is W_(t/2) a martingale?
问一个Shreve V2上的问题
请教一个矩阵Bound问题,谢谢
来个题吧
[合集] 有没有free的quadratic optimization package?
[合集] 请问一道题
[合集] 请问一个关于asymmetric random walk的问题
相关话题的讨论汇总
话题: ij话题: matrices话题: 非负话题: exp话题: symmetric
进入Quant版参与讨论
1 (共1页)
j******n
发帖数: 271
1
给定非负定矩阵:
A = (a_{ij})

B = (e^{a_{ij}})
是否非负定? (note that B != e^A)
s***e
发帖数: 267
2
Consider A = [2, 3.9; 1, 2] which is PD.
However, exp(2)*exp(2)-exp(3.9)*exp(1) < 0.

【在 j******n 的大作中提到】
: 给定非负定矩阵:
: A = (a_{ij})
: 问
: B = (e^{a_{ij}})
: 是否非负定? (note that B != e^A)

h**o
发帖数: 78
3


【在 s***e 的大作中提到】
: Consider A = [2, 3.9; 1, 2] which is PD.
: However, exp(2)*exp(2)-exp(3.9)*exp(1) < 0.

b**g
发帖数: 949
4
平生最佩服构造法解题的高手,最不喜欢反证法。

【在 h**o 的大作中提到】
: 赞
D**u
发帖数: 204
5
I suppose the question is about symmetric matrices only.
Generally "positive semi-definite" matrices are only defined on symmetric
matrices, and there is no consensus about how to define positive semi-
definite on non-symmetric matrices.

【在 s***e 的大作中提到】
: Consider A = [2, 3.9; 1, 2] which is PD.
: However, exp(2)*exp(2)-exp(3.9)*exp(1) < 0.

s***e
发帖数: 267
6
Yes you are right. If we look at the quadratic forms, then definition of the
"positive definiteness" of asymmetric
matrices does not make much sense.
If A has to be symmetric, then it seems that the answer is Yes, exp(A) (
elementwise exponential) is also PSD.
One way to see this is to look at expansion of exponential at each element.
Then notice that (1) for PSD, the
diagonal element dominate the corresponding row/column elements; (2) the PSD
property does not change if
we simply rescale the ma

【在 D**u 的大作中提到】
: I suppose the question is about symmetric matrices only.
: Generally "positive semi-definite" matrices are only defined on symmetric
: matrices, and there is no consensus about how to define positive semi-
: definite on non-symmetric matrices.

J******d
发帖数: 506
7
都不需要是对陈阵么?

【在 s***e 的大作中提到】
: Consider A = [2, 3.9; 1, 2] which is PD.
: However, exp(2)*exp(2)-exp(3.9)*exp(1) < 0.

J******d
发帖数: 506
8
1. A>=0 推出 (A)^k >= 0. 这里是对A做k次Hadamard product.
2. 因此,(A)^0 + (A)^1 + (A)^2/2 + ... (A)^k/k! >=0.
3. B >=0.

【在 j******n 的大作中提到】
: 给定非负定矩阵:
: A = (a_{ij})
: 问
: B = (e^{a_{ij}})
: 是否非负定? (note that B != e^A)

g**********1
发帖数: 1113
9
Notice B!=e^A. A^2!=(a_{ij}^2) right?
j******n
发帖数: 271
10
you are right.

【在 J******d 的大作中提到】
: 1. A>=0 推出 (A)^k >= 0. 这里是对A做k次Hadamard product.
: 2. 因此,(A)^0 + (A)^1 + (A)^2/2 + ... (A)^k/k! >=0.
: 3. B >=0.

1 (共1页)
进入Quant版参与讨论
相关主题
[合集] 请问一个关于asymmetric random walk的问题
anybody can suggest me some e-book? thx
Asymmetric Random walk problem
问概率问题
请问:关于market risk VaR models
面试题讨论: three variables correlation coefficients有不求特征值的快速判断法吗?
[合集] 请问哪位大牛对Sharpe Ratio比较熟悉?
其实次贷的问题Hull那本Risk Management里已经总结了啊。。。
inverse of Vandermonde matrix
问个挺基本的问题
相关话题的讨论汇总
话题: ij话题: matrices话题: 非负话题: exp话题: symmetric