o****e 发帖数: 80 | 1 X(t)=W(t) and Y (t) = int_0_t{W(s)}ds.
if X(t)Y(t) = \int_0^t W(s)^2ds + \int_0^tY(t)dW(t)
E[X(t)Y(t)] =E[ \int_0^t W(s)^2ds + \int_0^tY(t)dW(t) ]
=\int_0^t E[W(s)^2] ds + \int_0^t E[Y(t)] dW(t) ???? 这一步对吗?根据什么
定理?好像不是 ito isometry把? |
a*******h 发帖数: 123 | 2 Fubini?
【在 o****e 的大作中提到】 : X(t)=W(t) and Y (t) = int_0_t{W(s)}ds. : if X(t)Y(t) = \int_0^t W(s)^2ds + \int_0^tY(t)dW(t) : E[X(t)Y(t)] =E[ \int_0^t W(s)^2ds + \int_0^tY(t)dW(t) ] : =\int_0^t E[W(s)^2] ds + \int_0^t E[Y(t)] dW(t) ???? 这一步对吗?根据什么 : 定理?好像不是 ito isometry把?
|
t********t 发帖数: 1264 | 3 you can work this out by either Fubini theorem or Ito isometry.
The result is t^2/2 |
r*******y 发帖数: 290 | 4 how to work out using ito isometry?
【在 t********t 的大作中提到】 : you can work this out by either Fubini theorem or Ito isometry. : The result is t^2/2
|
t********t 发帖数: 1264 | 5 E[ \int_0^t W(s)^2ds ]=E[(\int_0^t W(s)dW(s))^2] |
r*******y 发帖数: 290 | 6 nice, thanks
【在 t********t 的大作中提到】 : E[ \int_0^t W(s)^2ds ]=E[(\int_0^t W(s)dW(s))^2]
|
b***k 发帖数: 2673 | 7 Then how to continue to get the answer?
I think you make the problem even harder if you work on it in this way.
【在 t********t 的大作中提到】 : E[ \int_0^t W(s)^2ds ]=E[(\int_0^t W(s)dW(s))^2]
|
j*****4 发帖数: 292 | 8 yes,this method leads to a more complex track.
The following is what I did:
E(int_t^0 W_s dW_s)^2
=1/4 E(W_t^2-t)^2
=1/4 E(W_t^4-2tW_t^2+t^2)
recall that
E(W_t^2)=t
E(W_t^4)=3t^2( ...=E(int_t^0 d(W_s^4)) then use Ito lemma)
so the answer is t^2/2.
【在 b***k 的大作中提到】 : Then how to continue to get the answer? : I think you make the problem even harder if you work on it in this way.
|
b***k 发帖数: 2673 | 9 I got it the same way, that's why I said this approach may not be a good one.
【在 j*****4 的大作中提到】 : yes,this method leads to a more complex track. : The following is what I did: : E(int_t^0 W_s dW_s)^2 : =1/4 E(W_t^2-t)^2 : =1/4 E(W_t^4-2tW_t^2+t^2) : recall that : E(W_t^2)=t : E(W_t^4)=3t^2( ...=E(int_t^0 d(W_s^4)) then use Ito lemma) : so the answer is t^2/2.
|