由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - a ito intergral question
相关主题
ito积分术业不精,求问个基本问题
菜鸟请教积分问题[合集] 问JOHN HULL书里面的两个方程。。。
An integral questionBrownian motion 的4次moment怎么求呢?
Ito Integralhow to pronunce Ito's lemma?
请教一个随机积分的题目one stochastic question , payoff =1/S
问一道stochastic[合集] Interview question:Finance
○○○ 求证一个随机积分的收敛性 ○○○[合集] 如何证明discounted stock price is martingale?
一个 SDE题目A question about Ito's Lemma
相关话题的讨论汇总
话题: int话题: dw话题: ito话题: 2ds话题: ty
进入Quant版参与讨论
1 (共1页)
o****e
发帖数: 80
1
X(t)=W(t) and Y (t) = int_0_t{W(s)}ds.
if X(t)Y(t) = \int_0^t W(s)^2ds + \int_0^tY(t)dW(t)
E[X(t)Y(t)] =E[ \int_0^t W(s)^2ds + \int_0^tY(t)dW(t) ]
=\int_0^t E[W(s)^2] ds + \int_0^t E[Y(t)] dW(t) ???? 这一步对吗?根据什么
定理?好像不是 ito isometry把?
a*******h
发帖数: 123
2
Fubini?

【在 o****e 的大作中提到】
: X(t)=W(t) and Y (t) = int_0_t{W(s)}ds.
: if X(t)Y(t) = \int_0^t W(s)^2ds + \int_0^tY(t)dW(t)
: E[X(t)Y(t)] =E[ \int_0^t W(s)^2ds + \int_0^tY(t)dW(t) ]
: =\int_0^t E[W(s)^2] ds + \int_0^t E[Y(t)] dW(t) ???? 这一步对吗?根据什么
: 定理?好像不是 ito isometry把?

t********t
发帖数: 1264
3
you can work this out by either Fubini theorem or Ito isometry.
The result is t^2/2
r*******y
发帖数: 290
4
how to work out using ito isometry?

【在 t********t 的大作中提到】
: you can work this out by either Fubini theorem or Ito isometry.
: The result is t^2/2

t********t
发帖数: 1264
5
E[ \int_0^t W(s)^2ds ]=E[(\int_0^t W(s)dW(s))^2]
r*******y
发帖数: 290
6
nice, thanks

【在 t********t 的大作中提到】
: E[ \int_0^t W(s)^2ds ]=E[(\int_0^t W(s)dW(s))^2]
b***k
发帖数: 2673
7
Then how to continue to get the answer?
I think you make the problem even harder if you work on it in this way.

【在 t********t 的大作中提到】
: E[ \int_0^t W(s)^2ds ]=E[(\int_0^t W(s)dW(s))^2]
j*****4
发帖数: 292
8
yes,this method leads to a more complex track.
The following is what I did:
E(int_t^0 W_s dW_s)^2
=1/4 E(W_t^2-t)^2
=1/4 E(W_t^4-2tW_t^2+t^2)
recall that
E(W_t^2)=t
E(W_t^4)=3t^2( ...=E(int_t^0 d(W_s^4)) then use Ito lemma)
so the answer is t^2/2.

【在 b***k 的大作中提到】
: Then how to continue to get the answer?
: I think you make the problem even harder if you work on it in this way.

b***k
发帖数: 2673
9
I got it the same way, that's why I said this approach may not be a good one.

【在 j*****4 的大作中提到】
: yes,this method leads to a more complex track.
: The following is what I did:
: E(int_t^0 W_s dW_s)^2
: =1/4 E(W_t^2-t)^2
: =1/4 E(W_t^4-2tW_t^2+t^2)
: recall that
: E(W_t^2)=t
: E(W_t^4)=3t^2( ...=E(int_t^0 d(W_s^4)) then use Ito lemma)
: so the answer is t^2/2.

1 (共1页)
进入Quant版参与讨论
相关主题
A question about Ito's Lemma请教一个随机积分的题目
We lost Ito...问一道stochastic
问两个GS面试题○○○ 求证一个随机积分的收敛性 ○○○
drift term and martingale一个 SDE题目
ito积分术业不精,求问个基本问题
菜鸟请教积分问题[合集] 问JOHN HULL书里面的两个方程。。。
An integral questionBrownian motion 的4次moment怎么求呢?
Ito Integralhow to pronunce Ito's lemma?
相关话题的讨论汇总
话题: int话题: dw话题: ito话题: 2ds话题: ty