c**********e 发帖数: 2007 | 1 How to solve this problem?
7. Three nine digits number e,f,and g. If we replace f_i with e_i they the
new nine digites can be divided by 7, for all i. Same happens if we replace
g_i with f_i,prove that g_i-e_i==0 mod 7 for all i. | l*********t 发帖数: 89 | 2 同问。有没有牛人出来指点一下啊?
即使没有最终答案,说说思路也好,大家一起讨论。多谢了!
replace
【在 c**********e 的大作中提到】 : How to solve this problem? : 7. Three nine digits number e,f,and g. If we replace f_i with e_i they the : new nine digites can be divided by 7, for all i. Same happens if we replace : g_i with f_i,prove that g_i-e_i==0 mod 7 for all i.
| w******g 发帖数: 313 | 3 这不显然么。。考虑f的第i位,和e的第i位交换以后f能被7整除,和j的第i位交换以后
f能被7整除,所以(e_i-g_i)*10e7是7的倍数,for all i | x******a 发帖数: 6336 | 4 e_i+\sum_{ j \ne i} f_i == 0 mod 7 for all i=1, 2, ..., 9,
f_i +\sum_{j \ne i} g_i == 0 mod 7 for all i=1, 2, ..., 9.
=> (sum up)
\sum e_i + \sum f_i == 0 mod 7.
\sum f_i + \sum g_i == 0 mod 7.
e_i== -\sum f_j + f_i == \sum g_j + f_i == g_i mod 7. | c**********e 发帖数: 2007 | 5 The original problem says "Same happens if we replace g_i with f_i". I think
it means the new G is divisable by 7.
I guess you misunderstood the original problem. Otherwise the problem was
too easy.
【在 w******g 的大作中提到】 : 这不显然么。。考虑f的第i位,和e的第i位交换以后f能被7整除,和j的第i位交换以后 : f能被7整除,所以(e_i-g_i)*10e7是7的倍数,for all i
| x******a 发帖数: 6336 | 6 e_i10^i + \sum_{j \ne i}f_j10^j==0 mod 7. ------1
f_i10^i + \sum_{j \ne i}g_j10^j==0 mod 7. ------2
==> (sum up 1 and 2 separately)
\sum e_i10^i +\sum f_i 10^i==0 mod 7 ------------3
\sum f_i10^i +\sum g_i 10^i==0 mod 7 ------------4
==>
e_i10^i== -\sum f_j 10^j +f_i 10^i (b/c 1)
==\sum g_j 10^j + f_i10^i (b/c 4)
==g_i10^i mod 7. (b/c 2)
It follows 7|e_i-g_i for each i since 7 is prime and 7 doesn't divide any 10
^i.
replace
【在 c**********e 的大作中提到】 : How to solve this problem? : 7. Three nine digits number e,f,and g. If we replace f_i with e_i they the : new nine digites can be divided by 7, for all i. Same happens if we replace : g_i with f_i,prove that g_i-e_i==0 mod 7 for all i.
|
|