由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - When is an Ito process a diffusion
相关主题
求PDF版的Stochastic Differential Equations and Diffusion Processes这道题, 我做得对马?(stochastic process)
【问题 Shreve 4.1.19 Brownian Motion】[合集] how to prove? (stochastic calculus)
我来推荐Stochastic Calculus的书cal expected value
[合集] 请推荐 stochastic calculus 的书问一道stochastic
至今quant面试情况总结兼求助帖关于Shreve书上的重点章节
求解optimal stopping problem【Stochastic Integral】一个简单问题?
one stochastic question , payoff =1/S请教个AR(1)的问题 - 包子求解 (转载)
[合集] Stochastic Calculus for Finance II: Continuous Time Models,【Stochastic Calculus】
相关话题的讨论汇总
话题: sigma话题: stochastic话题: ito话题: when话题: process
进入Quant版参与讨论
1 (共1页)
Q***5
发帖数: 994
1
I'm reading Oksendal's Stochastic Differential Equation,
http://books.google.com/books?id=kXw9hB4EEpUC&lpg=PP1&dq=oksend
Theorem 8.4.3, it seems that in the proof of sufficiency, only E^x(v v^t| N_
t) = \sigma \sigma^T(Y_t^x) is needed. This means that, all other conditions
hold,
E^x(v v^t| N_t) = \sigma \sigma^T(Y_t^x) implies that
v v^t( t,w) = \sigma \sigma^T(Y_t^x (w)), a little bit surprising, isn't it?
Can some experts of Stochastic process confirm?
Thanks
1 (共1页)
进入Quant版参与讨论
相关主题
【Stochastic Calculus】至今quant面试情况总结兼求助帖
怎么用historical record来fit任意stochastic process?求解optimal stopping problem
[合集] 新手问题(stochastic calculus)one stochastic question , payoff =1/S
发包子求paper[合集] Stochastic Calculus for Finance II: Continuous Time Models,
求PDF版的Stochastic Differential Equations and Diffusion Processes这道题, 我做得对马?(stochastic process)
【问题 Shreve 4.1.19 Brownian Motion】[合集] how to prove? (stochastic calculus)
我来推荐Stochastic Calculus的书cal expected value
[合集] 请推荐 stochastic calculus 的书问一道stochastic
相关话题的讨论汇总
话题: sigma话题: stochastic话题: ito话题: when话题: process