由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - another interview question
相关主题
请教2道概率题Interview Questions from two "famous" hedge funds
请教fair coin一道题random walk type problem
这道题, 我做得对马?(stochastic process)求教一道概率题
请教一个面试题求教一个random walk题
问一个gambler's ruin的问题一个概率题
请教几道题,急,在线等[合集] 问一个martingale的问题,谢谢
A probability question小女子~急求 概率题~~解法~~~
A random walk problem.martingale question
相关话题的讨论汇总
话题: martingale话题: cliff话题: solve话题: question
进入Quant版参与讨论
1 (共1页)
x********o
发帖数: 519
1
A person is one step from the cliff. He does a random walk with
probability 1/3 towards the cliff. What is
the probability that he will eventually fall off the cliff
is the answer 1/2?
s**********y
发帖数: 353
2
if one step from the cliff means he falls after he makes one step, I think
the answer is 1/2, otherwise it is 1/4.

【在 x********o 的大作中提到】
: A person is one step from the cliff. He does a random walk with
: probability 1/3 towards the cliff. What is
: the probability that he will eventually fall off the cliff
: is the answer 1/2?

j******n
发帖数: 271
3
1
c**********e
发帖数: 2007
4
1/2 is correct.

【在 x********o 的大作中提到】
: A person is one step from the cliff. He does a random walk with
: probability 1/3 towards the cliff. What is
: the probability that he will eventually fall off the cliff
: is the answer 1/2?

r*******y
发帖数: 1081
5
got p(n) - p(n+1) = (1/2)(1 - p(1))
how to find p(1) ?

【在 x********o 的大作中提到】
: A person is one step from the cliff. He does a random walk with
: probability 1/3 towards the cliff. What is
: the probability that he will eventually fall off the cliff
: is the answer 1/2?

l*******l
发帖数: 248
6
说说过程。。。

【在 c**********e 的大作中提到】
: 1/2 is correct.
S*********g
发帖数: 5298
7
P(1->0)=1/3 + 2/3 P(2->0) = 1/3 + 2/3 * [P(1->0)]^2
=> 2x^2 - 3x + 1 = 0 => (2x-1)(x-1)=0 => x=1/2

【在 l*******l 的大作中提到】
: 说说过程。。。
r*******y
发帖数: 1081
8
nice

【在 S*********g 的大作中提到】
: P(1->0)=1/3 + 2/3 P(2->0) = 1/3 + 2/3 * [P(1->0)]^2
: => 2x^2 - 3x + 1 = 0 => (2x-1)(x-1)=0 => x=1/2

m****u
发帖数: 37
9
3/7
p(1->0)=3/7
p(2->0)=1/7
x********o
发帖数: 519
10
can you explain it?

【在 m****u 的大作中提到】
: 3/7
: p(1->0)=3/7
: p(2->0)=1/7

相关主题
请教几道题,急,在线等Interview Questions from two "famous" hedge funds
A probability questionrandom walk type problem
A random walk problem.求教一道概率题
进入Quant版参与讨论
w*********m
发帖数: 196
11
p=1/3+2/3*p^2
solve p=1 or 1/2
p=1/2
m****u
发帖数: 37
12
1/3+(1/3)*[(1/3)*(2/3)]+(1/3)*[(1/3)*(2/3)]^2+(1/3)*[(1/3)*(2/3)]^3+.....=
(1/3)*[1/(1-2/9)]=3/7
在 xiaozhuluo (Xiao Zhu Luo) 的大作中提到: 】
l*******l
发帖数: 248
13
this is NOT the right one

【在 m****u 的大作中提到】
: 1/3+(1/3)*[(1/3)*(2/3)]+(1/3)*[(1/3)*(2/3)]^2+(1/3)*[(1/3)*(2/3)]^3+.....=
: (1/3)*[1/(1-2/9)]=3/7
: 在 xiaozhuluo (Xiao Zhu Luo) 的大作中提到: 】

x********o
发帖数: 519
14
are you sure?
do you have any reference on this problem?
I think the answer should be 1/2

【在 l*******l 的大作中提到】
: this is NOT the right one
l*******l
发帖数: 248
15
打错了。。。。是1/2
想说那个是不对的。。lol

【在 x********o 的大作中提到】
: are you sure?
: do you have any reference on this problem?
: I think the answer should be 1/2

c**********s
发帖数: 295
16
this is a standard random walk with drift problem.
the equation listed above is simple but not the best solution. what if the
boundary is not 1 but 10.
x********o
发帖数: 519
17
good point.
then what will be the solution?

【在 c**********s 的大作中提到】
: this is a standard random walk with drift problem.
: the equation listed above is simple but not the best solution. what if the
: boundary is not 1 but 10.

l*******l
发帖数: 248
18
(1/2)^10

【在 x********o 的大作中提到】
: good point.
: then what will be the solution?

a******e
发帖数: 710
19
Why P(2-> 0) = P(1->0)^2
thanks

【在 S*********g 的大作中提到】
: P(1->0)=1/3 + 2/3 P(2->0) = 1/3 + 2/3 * [P(1->0)]^2
: => 2x^2 - 3x + 1 = 0 => (2x-1)(x-1)=0 => x=1/2

o*p
发帖数: 77
20
1/4

【在 x********o 的大作中提到】
: A person is one step from the cliff. He does a random walk with
: probability 1/3 towards the cliff. What is
: the probability that he will eventually fall off the cliff
: is the answer 1/2?

相关主题
求教一个random walk题小女子~急求 概率题~~解法~~~
一个概率题martingale question
[合集] 问一个martingale的问题,谢谢stock as numeraire
进入Quant版参与讨论
e******0
发帖数: 211
21
P(2->0) = P(2->1)P(1->0)
P(2->1)=P(1->0)

【在 a******e 的大作中提到】
: Why P(2-> 0) = P(1->0)^2
: thanks

S*********g
发帖数: 5298
22
gambler's ruin

【在 c**********s 的大作中提到】
: this is a standard random walk with drift problem.
: the equation listed above is simple but not the best solution. what if the
: boundary is not 1 but 10.

s**********y
发帖数: 353
23
It is still a gamler's ruin problem. You just take the other end to infinity
.

【在 x********o 的大作中提到】
: good point.
: then what will be the solution?

c**********s
发帖数: 295
24
it is the gambler's ruin, that is why i said it is a very standard question.
i prefer to solve it by moving it to the exp space so that it connects to
the continues case better and also there is no linear equation set to mess
around.
s**********y
发帖数: 353
25
Are you talking about exp martingale? How to connect this problem to
continuous space? Can you elaborate more on your approach?

question.

【在 c**********s 的大作中提到】
: it is the gambler's ruin, that is why i said it is a very standard question.
: i prefer to solve it by moving it to the exp space so that it connects to
: the continues case better and also there is no linear equation set to mess
: around.

f**a
发帖数: 2498
26
喜粉鸡一是对滴。耳粪妓一是不对滴。
you have to go one step further to fall over, ie S_n = -2.
also you need a little extra argument to show stopping time (S_n = -2 is an
absorbing state) is finite almost sure. this essentially exclude the
possibility for solution x=1.

【在 x********o 的大作中提到】
: A person is one step from the cliff. He does a random walk with
: probability 1/3 towards the cliff. What is
: the probability that he will eventually fall off the cliff
: is the answer 1/2?

a******e
发帖数: 710
27
Thanks. Do you know any books talking about this kind of problem?

【在 e******0 的大作中提到】
: P(2->0) = P(2->1)P(1->0)
: P(2->1)=P(1->0)

c**********s
发帖数: 295
28
the same as you solve the continuous case,
y=exp(lambda*x) and solve lambda so that y is a martingale.

【在 s**********y 的大作中提到】
: Are you talking about exp martingale? How to connect this problem to
: continuous space? Can you elaborate more on your approach?
:
: question.

n*********u
发帖数: 34
29
大家说的都好高深,有没有人帮我看看这个最初等的解法有什么问题,先有个假设,如
果n步不是迈向悬崖,那么必须要向悬崖走(n+1)步才能掉下去,这里好像假设了是直路
,然后各种走法概率求和:
1/3+2/3*(1/3)^2+(2/3)^2*(1/3)^3+...=3/7
r*******y
发帖数: 1081
30
suppose cliff is indexed 0, and from left on we index the points as 1, 2, 3,
...
suppose we are at point 2, then your question is whether the probability to
get
off the cliff is (1/3)^2 starting at point 2.
But this probability should be bigger than (1/3)^2, because besides the way
2-1-0, we have other ways like 2-1-2-1-0,...
To use your idea, the correct equation should be
1/3 + 2/3 * p(2) + (2/3)^2 p(3) + (2/3)^3 p(3) + ....
where p(n) = (p(1))^n.
If we plugin p(1) = 1/ 2, we can find the sum above also equals 1/2. But we
can not determine what p(1) is here.

【在 n*********u 的大作中提到】
: 大家说的都好高深,有没有人帮我看看这个最初等的解法有什么问题,先有个假设,如
: 果n步不是迈向悬崖,那么必须要向悬崖走(n+1)步才能掉下去,这里好像假设了是直路
: ,然后各种走法概率求和:
: 1/3+2/3*(1/3)^2+(2/3)^2*(1/3)^3+...=3/7

相关主题
[discuss] An extended martingale problem请教fair coin一道题
问道面试题目这道题, 我做得对马?(stochastic process)
请教2道概率题请教一个面试题
进入Quant版参与讨论
n*********u
发帖数: 34
31
Thank you very much for the detailed explanation!

3,
to
way

【在 r*******y 的大作中提到】
: suppose cliff is indexed 0, and from left on we index the points as 1, 2, 3,
: ...
: suppose we are at point 2, then your question is whether the probability to
: get
: off the cliff is (1/3)^2 starting at point 2.
: But this probability should be bigger than (1/3)^2, because besides the way
: 2-1-0, we have other ways like 2-1-2-1-0,...
: To use your idea, the correct equation should be
: 1/3 + 2/3 * p(2) + (2/3)^2 p(3) + (2/3)^3 p(3) + ....
: where p(n) = (p(1))^n.

p*******p
发帖数: 94
32
X_(n+1)=X_(n)+/-1
Head: +1 with probability p
Tail: -1 with probability q
Martingale: (q/p)^X_n
Martingale stopped at stopping time is a martingale.
left bound: -1
right bound: +inf
1=(q/p)^X_0=(1/2)^0=(1/2)^(-1)*P+0*(1-P)
P=1/2
or
1=(q/p)^X_0=(1/2)^0=(1/2)^(-2)*P+0*(1-P)
P=1/4
k**u
发帖数: 60
33
1/2:
P(0)=1;
p(1)=1/3*p(0)+2/3*p(2);
p(1)-p(0)=2*(p(2)-p(1));
assume P(N)=0;
so p(1)=1/2
anyway P(1)=1/3*p(0)+ 2/3*P(1)*P(1) is smart.
btw feel this is somehow related to stopped martingale is still a martingale, anyone has the same feeling?
L**********u
发帖数: 194
34
这题的结果就是1/2. 用 markov chain 做。
1 (共1页)
进入Quant版参与讨论
相关主题
martingale question问一个gambler's ruin的问题
stock as numeraire请教几道题,急,在线等
[discuss] An extended martingale problemA probability question
问道面试题目A random walk problem.
请教2道概率题Interview Questions from two "famous" hedge funds
请教fair coin一道题random walk type problem
这道题, 我做得对马?(stochastic process)求教一道概率题
请教一个面试题求教一个random walk题
相关话题的讨论汇总
话题: martingale话题: cliff话题: solve话题: question