由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - 【Stochastic Integral】 \int_0^T W_tdt
相关主题
至今quant面试情况总结兼求助帖[合集] assume W(t) is a standard Brownian motion
菜鸟请教积分问题哪里有习题答案Steven E. Shreve --- Stochastic Calculus for Finance II
弱问两个问题 (stochastic calculus)跳还是不跳,求建议?
一个stochastic的小问题who knows Philip E. Protter and his book?
找entry-level quant的话shreveII要看多少啊?[合集] 各位达人觉得Steven Shreve的书难度怎么样?
[合集] 新手问题(stochastic calculus)这个TODO list里面的几个事情,优先级应该怎么安排?
[合集] 请推荐 stochastic calculus 的书Shreve的Stochastic Calculus有solution嘛?
[合集] quant 入门:大家说的那本经典中的经典是哪一本啊?面试题目,Stochastic calculus求教
相关话题的讨论汇总
话题: normal话题: int话题: dw话题: tdt话题: dt
进入Quant版参与讨论
1 (共1页)
h*****u
发帖数: 204
1
对固定的T, \int_0^T W_tdt 是normal random variable吗? 如果是, 怎么证明?
我只算出来期望是0, 方差是 T^3/3, 有没有办法证明它是normal random variable?
l******i
发帖数: 1404
2
我觉得不是normal.....
最初的想法:
Set S_t=\int_0^t W_s ds;
Then: E[S_t]=0; E[S_t^2]=t^3/3.
注意:N(0,t^3/3)对应的moment generating function是exp{(u^2)*(t^3)/6};
如果S_t是normal,那么moment generating function必须一致,
也就是说E[exp{u*S_t}]=exp{(u^2)*(t^3)/6}成立;
i.e. E[exp{u*\int_0^t W_s ds-(u^2)*(t^3)/6}]=1;
Let P_t=exp{u*\int_0^t W_s ds-(u^2)*(t^3)/6}
If S_t is normal, usually P_t is a martingale,
then it will easy to prove E[exp{u*\int_0^t W_s ds-(u^2)*(t^3)/6}]=1.
(Such technique has been used by Shreve many times in his book.)
Apply Ito's on P_t:
dP_t=P_t*{u*W_t-(u^2)*(t^2)/2}dt;
However the drift part cannot be gone! So probably it is not normal.
Then I am considering about using
the moment identification to find the contradiction point.
Here is 严格证明:
Set S_t=\int_0^t W_s ds. Then: E[S_t]=0; E[S_t^2]=(t^3)/3.
如果S_t是normal的话,distribution就是N(0,(t^3)/3),mean=0 and var=(t^3)/3.
注意:N(0,t^3/3)对应的fourth moment是3*var^2=(t^6)/3;
通过计算可知E[S_t^4]=(t^6)/5,故矛盾!
l******n
发帖数: 9344
3
T*W_T-int_0^T t dW_t = \int_0^T W_tdt
Left side is normal

【在 l******i 的大作中提到】
: 我觉得不是normal.....
: 最初的想法:
: Set S_t=\int_0^t W_s ds;
: Then: E[S_t]=0; E[S_t^2]=t^3/3.
: 注意:N(0,t^3/3)对应的moment generating function是exp{(u^2)*(t^3)/6};
: 如果S_t是normal,那么moment generating function必须一致,
: 也就是说E[exp{u*S_t}]=exp{(u^2)*(t^3)/6}成立;
: i.e. E[exp{u*\int_0^t W_s ds-(u^2)*(t^3)/6}]=1;
: Let P_t=exp{u*\int_0^t W_s ds-(u^2)*(t^3)/6}
: If S_t is normal, usually P_t is a martingale,

h*****u
发帖数: 204
4
We know that T*W_T is normal
and int_0^T t dW_t is normal,(integrand is non-random)
If T*W_T and int_0^T t dW_t are independent.
then it is normal.
But T*W_T and int_0^T t dW_t are NOT independent.
Then I don't know.
and for this one I think T*W_T and int_0^T t dW_t are NOT independent.
So could you show me how do you get that? Thanks

【在 l******n 的大作中提到】
: T*W_T-int_0^T t dW_t = \int_0^T W_tdt
: Left side is normal

h*****u
发帖数: 204
5
感觉应该是的, 从积分的定义
\int_0^T W_tdt=sum W_t(j)(t(j+1)-t(j)),
可以认为是无穷个正太分布的和,所以感觉上我觉得是的,但是不知道怎么证明。

【在 l******i 的大作中提到】
: 我觉得不是normal.....
: 最初的想法:
: Set S_t=\int_0^t W_s ds;
: Then: E[S_t]=0; E[S_t^2]=t^3/3.
: 注意:N(0,t^3/3)对应的moment generating function是exp{(u^2)*(t^3)/6};
: 如果S_t是normal,那么moment generating function必须一致,
: 也就是说E[exp{u*S_t}]=exp{(u^2)*(t^3)/6}成立;
: i.e. E[exp{u*\int_0^t W_s ds-(u^2)*(t^3)/6}]=1;
: Let P_t=exp{u*\int_0^t W_s ds-(u^2)*(t^3)/6}
: If S_t is normal, usually P_t is a martingale,

p********6
发帖数: 1802
6
The summation of two normal is normal no matter they are independent or not.

【在 h*****u 的大作中提到】
: We know that T*W_T is normal
: and int_0^T t dW_t is normal,(integrand is non-random)
: If T*W_T and int_0^T t dW_t are independent.
: then it is normal.
: But T*W_T and int_0^T t dW_t are NOT independent.
: Then I don't know.
: and for this one I think T*W_T and int_0^T t dW_t are NOT independent.
: So could you show me how do you get that? Thanks

h*****u
发帖数: 204
7
Let A is a normal random variable
let B=-A is a normal random variable.
But C=B+A=0
C=0 is not a normal random variable.

not.

【在 p********6 的大作中提到】
: The summation of two normal is normal no matter they are independent or not.
p********6
发帖数: 1802
8
Why not? It is a normal with zero variance

【在 h*****u 的大作中提到】
: Let A is a normal random variable
: let B=-A is a normal random variable.
: But C=B+A=0
: C=0 is not a normal random variable.
:
: not.

h*****u
发帖数: 204
9
Maybe my example is not so good, I will try to figure out a better one,haha

【在 p********6 的大作中提到】
: Why not? It is a normal with zero variance
h*****u
发帖数: 204
10
Let X have a standard normal distribution.
Let Z be independent of X, with Z equally likely to be +1 or -1 (i.e., Pr[Z=
+1] = Pr[Z=-1] = 1/2).
Let Y = X Z (the product of X and Z).
[ShreveII example 2.2.10 page 62-63] we know Y is standard normal
but Prob(X+Y=0)=1/2 so X+Y is not normal.

not.

【在 p********6 的大作中提到】
: The summation of two normal is normal no matter they are independent or not.
相关主题
[合集] 新手问题(stochastic calculus)[合集] assume W(t) is a standard Brownian motion
[合集] 请推荐 stochastic calculus 的书哪里有习题答案Steven E. Shreve --- Stochastic Calculus for Finance II
[合集] quant 入门:大家说的那本经典中的经典是哪一本啊?跳还是不跳,求建议?
进入Quant版参与讨论
p********6
发帖数: 1802
11
OK, independence is required

Z=

【在 h*****u 的大作中提到】
: Let X have a standard normal distribution.
: Let Z be independent of X, with Z equally likely to be +1 or -1 (i.e., Pr[Z=
: +1] = Pr[Z=-1] = 1/2).
: Let Y = X Z (the product of X and Z).
: [ShreveII example 2.2.10 page 62-63] we know Y is standard normal
: but Prob(X+Y=0)=1/2 so X+Y is not normal.
:
: not.

l******i
发帖数: 1404
12
当然要independence。
按你的说法:
任意多个normal variable的joint distribution都是multivariate normal了。
明显不可能啊,
那Shreve在4.7节证明几个Gaussian process例子的时候那么费劲干吗。。。。。。。

not.

【在 p********6 的大作中提到】
: The summation of two normal is normal no matter they are independent or not.
l******i
发帖数: 1404
13
Here is 严格证明:
Set S_t=\int_0^t W_s ds. Then: E[S_t]=0; E[S_t^2]=(t^3)/3.
如果S_t是normal的话,distribution就是N(0,(t^3)/3),mean=0 and var=(t^3)/3.
注意:N(0,t^3/3)对应的fourth moment是3*var^2=(t^6)/3;
通过计算可知E[S_t^4]=(t^6)/5,故矛盾!

【在 h*****u 的大作中提到】
: 感觉应该是的, 从积分的定义
: \int_0^T W_tdt=sum W_t(j)(t(j+1)-t(j)),
: 可以认为是无穷个正太分布的和,所以感觉上我觉得是的,但是不知道怎么证明。

x******a
发帖数: 6336
14
consider the property of Characteristic function

【在 h*****u 的大作中提到】
: 感觉应该是的, 从积分的定义
: \int_0^T W_tdt=sum W_t(j)(t(j+1)-t(j)),
: 可以认为是无穷个正太分布的和,所以感觉上我觉得是的,但是不知道怎么证明。

x******a
发帖数: 6336
15
it seems to me only joint normal is required.

【在 p********6 的大作中提到】
: OK, independence is required
:
: Z=

p********6
发帖数: 1802
16
But if the correlation of X Y is const, then X Y can be represented by two
independent normal, then the summation seems to be normal...

【在 l******i 的大作中提到】
: 当然要independence。
: 按你的说法:
: 任意多个normal variable的joint distribution都是multivariate normal了。
: 明显不可能啊,
: 那Shreve在4.7节证明几个Gaussian process例子的时候那么费劲干吗。。。。。。。
:
: not.

p********6
发帖数: 1802
17
Is the joint normal equivalent with the X Y has const correlation?

【在 x******a 的大作中提到】
: it seems to me only joint normal is required.
l******i
发帖数: 1404
18
no
xiaojiya说的是(X,Y)如果jointly normal,
那么任意linear combination of X and Y must be normal,
自然而然summation就是normal的,
这是exactly jointly normal的定义,和你说的correlation一点关系也没有。

【在 p********6 的大作中提到】
: Is the joint normal equivalent with the X Y has const correlation?
l******i
发帖数: 1404
19
Since correlation is always const given any two normal variables,
I really don't know what you are talking about here............
Where are these theorems from?

two

【在 p********6 的大作中提到】
: But if the correlation of X Y is const, then X Y can be represented by two
: independent normal, then the summation seems to be normal...

p********6
发帖数: 1802
20
Shreve 习题4.13?

【在 l******i 的大作中提到】
: Since correlation is always const given any two normal variables,
: I really don't know what you are talking about here............
: Where are these theorems from?
:
: two

相关主题
who knows Philip E. Protter and his book?Shreve的Stochastic Calculus有solution嘛?
[合集] 各位达人觉得Steven Shreve的书难度怎么样?面试题目,Stochastic calculus求教
这个TODO list里面的几个事情,优先级应该怎么安排?有没有济弱扶贫的大侠帮忙看看简历能不能用
进入Quant版参与讨论
l******n
发帖数: 9344
21
Yes, they are not independent, correlation is T^3/2

【在 h*****u 的大作中提到】
: We know that T*W_T is normal
: and int_0^T t dW_t is normal,(integrand is non-random)
: If T*W_T and int_0^T t dW_t are independent.
: then it is normal.
: But T*W_T and int_0^T t dW_t are NOT independent.
: Then I don't know.
: and for this one I think T*W_T and int_0^T t dW_t are NOT independent.
: So could you show me how do you get that? Thanks

h*********7
发帖数: 23
22
非独立的正态分布之和还是正太分布....绿皮书里面貌似有这道题目.. 因为 Ho Lee
model算 Bond Price的时候要用到这个

【在 h*****u 的大作中提到】
: We know that T*W_T is normal
: and int_0^T t dW_t is normal,(integrand is non-random)
: If T*W_T and int_0^T t dW_t are independent.
: then it is normal.
: But T*W_T and int_0^T t dW_t are NOT independent.
: Then I don't know.
: and for this one I think T*W_T and int_0^T t dW_t are NOT independent.
: So could you show me how do you get that? Thanks

k*****y
发帖数: 744
23
please see if there is anything wrong with this argument?

【在 h*****u 的大作中提到】
: 对固定的T, \int_0^T W_tdt 是normal random variable吗? 如果是, 怎么证明?
: 我只算出来期望是0, 方差是 T^3/3, 有没有办法证明它是normal random variable?

k*****y
发帖数: 744
24
能不能详细说一下4th moment怎么算?谢谢~

【在 l******i 的大作中提到】
: Since correlation is always const given any two normal variables,
: I really don't know what you are talking about here............
: Where are these theorems from?
:
: two

l******i
发帖数: 1404
25
Set S_t=\int_0^t W_s ds.
把这些式子写成两边积分的形式,然后从下往上推:
d(S_t^4)=4*S_t^3*W_t*dt
d(S_t^3*W_t)=3*S_t^2*W_t^2*dt+S_t^3*dW_t
d(S_t^2*W_t^2)=2*S_t*W_t^3*dt+2*S_t^2*W_t*dW_t+(1/2)*2*S_t^2*dt
E[S_t^2]=T^3/3
d(S_t*W_t^3)=W_t^4*dt+3*S_t*W_t^2*dW_t+(1/2)*6*S_t*W_t*dt
E[W_t^4]=3*t^2
d(S_t*W_t)=W_t^2*dt+S_t*dW_t
E[W_t^2]=t

【在 k*****y 的大作中提到】
: 能不能详细说一下4th moment怎么算?谢谢~
k*****y
发帖数: 744
26
第3,4行是不是少了对W的二阶导数?

【在 l******i 的大作中提到】
: Set S_t=\int_0^t W_s ds.
: 把这些式子写成两边积分的形式,然后从下往上推:
: d(S_t^4)=4*S_t^3*W_t*dt
: d(S_t^3*W_t)=3*S_t^2*W_t^2*dt+S_t^3*dW_t
: d(S_t^2*W_t^2)=2*S_t*W_t^3*dt+2*S_t^2*W_t*dW_t+(1/2)*2*S_t^2*dt
: E[S_t^2]=T^3/3
: d(S_t*W_t^3)=W_t^4*dt+3*S_t*W_t^2*dW_t+(1/2)*6*S_t*W_t*dt
: E[W_t^4]=3*t^2
: d(S_t*W_t)=W_t^2*dt+S_t*dW_t
: E[W_t^2]=t

x******a
发帖数: 6336
27
it is a normal distribution and you know mean and variance.

【在 k*****y 的大作中提到】
: 能不能详细说一下4th moment怎么算?谢谢~
l******i
发帖数: 1404
28
Moment generating function does not work for this problem.
And your proof is correct.

【在 k*****y 的大作中提到】
: please see if there is anything wrong with this argument?
h*****u
发帖数: 204
29
Thanks, I think you are right

【在 k*****y 的大作中提到】
: please see if there is anything wrong with this argument?
R**T
发帖数: 784
30
这个是对的
heard from street那本上好像有讲

【在 k*****y 的大作中提到】
: please see if there is anything wrong with this argument?
1 (共1页)
进入Quant版参与讨论
相关主题
面试题目,Stochastic calculus求教找entry-level quant的话shreveII要看多少啊?
有没有济弱扶贫的大侠帮忙看看简历能不能用[合集] 新手问题(stochastic calculus)
问书Shreve的 stochastic[合集] 请推荐 stochastic calculus 的书
John.Hull和Shreve的书都要看还是只要看一本就够了?[合集] quant 入门:大家说的那本经典中的经典是哪一本啊?
至今quant面试情况总结兼求助帖[合集] assume W(t) is a standard Brownian motion
菜鸟请教积分问题哪里有习题答案Steven E. Shreve --- Stochastic Calculus for Finance II
弱问两个问题 (stochastic calculus)跳还是不跳,求建议?
一个stochastic的小问题who knows Philip E. Protter and his book?
相关话题的讨论汇总
话题: normal话题: int话题: dw话题: tdt话题: dt