由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - 问一道题
相关主题
问一个mathproblems上的coin toss问题[合集] interview question (probability)
Brain teaser question[合集] probability 问题
A coin throwing question.More quant interview questions to share
coin toss 题[合集] 大家帮忙看到概率题,谢谢!
请教一个面试题quant interview questions(statistics)
问道面试题目【Probability】老题 Fair coin
A Brainteaser from a job interviewCoi pickup optimization problem?
About flipping coins问个概率题
相关话题的讨论汇总
话题: gambler话题: coin话题: he话题: choose话题: game
进入Quant版参与讨论
1 (共1页)
b******v
发帖数: 1493
1
题目如下:A gambler entered a game with initial money N. In the game, each
time the gambler flips a coin. If the coin is head, then he wins 2b,
otherwise he loses -b. He can flip the coin at most b times. The gambler is
allowed to choose the value b himself. How to choose b so that his expected
return is maximized?
多谢!
c***z
发帖数: 6348
2
EV = b, the larger b, the better
k*****n
发帖数: 117
3
No E[V | no knock out] = b
Not that simple. Need to work out knock out / ruin probability at each state
. Then optimize on b.
b******v
发帖数: 1493
4
有没有详细一点的解答?多谢!

state
★ 发自iPhone App: ChineseWeb - 中文网站浏览器

【在 k*****n 的大作中提到】
: No E[V | no knock out] = b
: Not that simple. Need to work out knock out / ruin probability at each state
: . Then optimize on b.

E*****T
发帖数: 1193
5
开始1块钱,赢一次赚两块,输一次赔一块,那么无限抛下去,不会输光的概率是大于1
/4的吧,随便估算了下比较明显。
然后证明,b=n时回报最大。
b>n/2时终止条件都一样,显然b=n最优。
b<=n/2时,赢钱数的期望<=n^2/8的。
b=n是,记g(n)为赢钱数的期望。那么g(n+1)>=(n+1)/n * g(n)+1/4 * (n+1)/2
(n+1)/n * g(n)是因为n+1时,无论赚赔都由n元变成了n+1元,1/4 (n+1)是1/4可能性
不归0可以多抛一次,这一次赚钱的期望为(n+1)/2。
然后由递归不等式易得:如果g(n)>n^2/8,则g(n+1)>(n+1)^2/8,然后再取n=3或者随便
一个数算算初值就行了。
1 (共1页)
进入Quant版参与讨论
相关主题
问个概率题请教一个面试题
请教一个题。。。问道面试题目
probability questionsA Brainteaser from a job interview
关于American put option的几个问题.About flipping coins
问一个mathproblems上的coin toss问题[合集] interview question (probability)
Brain teaser question[合集] probability 问题
A coin throwing question.More quant interview questions to share
coin toss 题[合集] 大家帮忙看到概率题,谢谢!
相关话题的讨论汇总
话题: gambler话题: coin话题: he话题: choose话题: game