l******i 发帖数: 1404 | 1 Suppose the coin is fair. I gain one on a head and lose one on a tail. I
quit when my position is +1.
What's the probability that the game terminates?
What's my expected winnings when the game ends?
Please explain in details. |
x******a 发帖数: 6336 | 2 let me guess.
1.
1.
楼下的给details. |
l******i 发帖数: 1404 | 3 Since the position at stopping time is always +1.
I guess the problem is asking us to find the expected number of heads in
total before the stopping time.
【在 x******a 的大作中提到】 : let me guess. : 1. : 1. : 楼下的给details.
|
x******a 发帖数: 6336 | 4 ohh, then I guess it is infinity |
l******i 发帖数: 1404 | 5 这个是first passage times吧,Shreve的Vol 1 - Chapter 5里面证明很详细。
面试时候直接说答案就行了吗?
会被要求推一遍过程吗?
【在 x******a 的大作中提到】 : ohh, then I guess it is infinity
|
x******a 发帖数: 6336 | 6 不用吧,如果不是,Doob optional stopping theorem成立,和结束时期望是1矛盾。
【在 l******i 的大作中提到】 : 这个是first passage times吧,Shreve的Vol 1 - Chapter 5里面证明很详细。 : 面试时候直接说答案就行了吗? : 会被要求推一遍过程吗?
|
l******i 发帖数: 1404 | 7 这是个很好的解释,但是
Probability that the game terminates = 1,这有什么简单解释吗?
。
【在 x******a 的大作中提到】 : 不用吧,如果不是,Doob optional stopping theorem成立,和结束时期望是1矛盾。
|
x********9 发帖数: 31 | 8 First question can be done by doing reflexion principle.
Second question is obviously 1. |