r*f 发帖数: 731 | 1 还有一个,再帮帮我吧
write the expression for the kinetic energy of a fluid
flow occupying a volume V by a surface S. If the flow is
irrotational and incompressible prove that the kinetic
energy is given by
{\rho}/2*{\intergral_s{\phi*{d{\phi}/dn}dA}
where \rho is density, \phi is the velocity potential.
d in d{\phi}/dn means partial differential.
//bow again | l**n 发帖数: 67 | 2
irrotational->\vec{v} = \div{phi} which is defined by you
incompressible->\laplace{phi}=0???(no source,sink)
by definition, kinetic energy is
\int_V \rho/2*(\grad{phi})^2 dV
= \rho/2*\int_V{(\grad{phi})^2}dV
= \rho/2*\int_V{\phi*\laplace{phi}+(\grad{phi})^2}dV
using Green's first identity
= \rho/2*\int_s{\phi*\vec{n}.\grad{\phi}dA}
= \rho/2*\int_s{\phi*\partial{\phi}/\partial{n}}dA
The green's first identity is:
for any well-behaved scalar function a,b,
\int_V{a\laplace{b}+\grad{a}.\grad{b})dV
【在 r*f 的大作中提到】 : 还有一个,再帮帮我吧 : write the expression for the kinetic energy of a fluid : flow occupying a volume V by a surface S. If the flow is : irrotational and incompressible prove that the kinetic : energy is given by : {\rho}/2*{\intergral_s{\phi*{d{\phi}/dn}dA} : where \rho is density, \phi is the velocity potential. : d in d{\phi}/dn means partial differential. : //bow again
| l**n 发帖数: 67 | 3
sorry,This should follow from the mass conservation.\rho is
constant????
\int_s{a*\vec{n}.\grad{b}}dA
【在 l**n 的大作中提到】 : : irrotational->\vec{v} = \div{phi} which is defined by you : incompressible->\laplace{phi}=0???(no source,sink) : by definition, kinetic energy is : \int_V \rho/2*(\grad{phi})^2 dV : = \rho/2*\int_V{(\grad{phi})^2}dV : = \rho/2*\int_V{\phi*\laplace{phi}+(\grad{phi})^2}dV : using Green's first identity : = \rho/2*\int_s{\phi*\vec{n}.\grad{\phi}dA} : = \rho/2*\int_s{\phi*\partial{\phi}/\partial{n}}dA
| r*f 发帖数: 731 | 4
(\grad{phi}^2)=\phi*\laplace{\phi}+(\grad{phi}^2) ???
Is there any type error?
【在 l**n 的大作中提到】 : : sorry,This should follow from the mass conservation.\rho is : constant???? : \int_s{a*\vec{n}.\grad{b}}dA
| r*f 发帖数: 731 | 5
Oh, I see.
div(\phi*grad(\phi))=\phi*laplace(\phi)+\grad(\phi)^2
since incompressible, div(v)=0,i.e., laplace(\phi)=0
so, we can get the result.
【在 r*f 的大作中提到】 : : (\grad{phi}^2)=\phi*\laplace{\phi}+(\grad{phi}^2) ??? : Is there any type error?
|
|