由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Science版 - 再求助
相关主题
[转载] Urgent: A simple problem. Thanks!Re: 希格斯场一问
A simple problem updated versionRe: Problem again
Re: 请问: 矢量场如何分解Re: what is virial?
Re: APS article about recent "superluminal light" experimentIs Laplacian operator Hermitian?
谁来推荐几本有关积分方程的书?Re: 一道看似容易的数学题
积分求解--谢谢先Re: In what conditions should it suitable to address the concept of vector waves?
光滑非齐次项的一维波动方程有非光滑解的例子?Re: help!
Weistrass的逼近定理Re: [转载] What is Dark Matter and Dark Energy?
相关话题的讨论汇总
话题: phi话题: rho话题: grad话题: da话题: laplace
进入Science版参与讨论
1 (共1页)
r*f
发帖数: 731
1
还有一个,再帮帮我吧
write the expression for the kinetic energy of a fluid
flow occupying a volume V by a surface S. If the flow is
irrotational and incompressible prove that the kinetic
energy is given by
{\rho}/2*{\intergral_s{\phi*{d{\phi}/dn}dA}
where \rho is density, \phi is the velocity potential.
d in d{\phi}/dn means partial differential.
//bow again
l**n
发帖数: 67
2

irrotational->\vec{v} = \div{phi} which is defined by you
incompressible->\laplace{phi}=0???(no source,sink)
by definition, kinetic energy is
\int_V \rho/2*(\grad{phi})^2 dV
= \rho/2*\int_V{(\grad{phi})^2}dV
= \rho/2*\int_V{\phi*\laplace{phi}+(\grad{phi})^2}dV
using Green's first identity
= \rho/2*\int_s{\phi*\vec{n}.\grad{\phi}dA}
= \rho/2*\int_s{\phi*\partial{\phi}/\partial{n}}dA
The green's first identity is:
for any well-behaved scalar function a,b,
\int_V{a\laplace{b}+\grad{a}.\grad{b})dV

【在 r*f 的大作中提到】
: 还有一个,再帮帮我吧
: write the expression for the kinetic energy of a fluid
: flow occupying a volume V by a surface S. If the flow is
: irrotational and incompressible prove that the kinetic
: energy is given by
: {\rho}/2*{\intergral_s{\phi*{d{\phi}/dn}dA}
: where \rho is density, \phi is the velocity potential.
: d in d{\phi}/dn means partial differential.
: //bow again

l**n
发帖数: 67
3

sorry,This should follow from the mass conservation.\rho is
constant????
\int_s{a*\vec{n}.\grad{b}}dA

【在 l**n 的大作中提到】
:
: irrotational->\vec{v} = \div{phi} which is defined by you
: incompressible->\laplace{phi}=0???(no source,sink)
: by definition, kinetic energy is
: \int_V \rho/2*(\grad{phi})^2 dV
: = \rho/2*\int_V{(\grad{phi})^2}dV
: = \rho/2*\int_V{\phi*\laplace{phi}+(\grad{phi})^2}dV
: using Green's first identity
: = \rho/2*\int_s{\phi*\vec{n}.\grad{\phi}dA}
: = \rho/2*\int_s{\phi*\partial{\phi}/\partial{n}}dA

r*f
发帖数: 731
4

(\grad{phi}^2)=\phi*\laplace{\phi}+(\grad{phi}^2) ???
Is there any type error?

【在 l**n 的大作中提到】
:
: sorry,This should follow from the mass conservation.\rho is
: constant????
: \int_s{a*\vec{n}.\grad{b}}dA

r*f
发帖数: 731
5

Oh, I see.
div(\phi*grad(\phi))=\phi*laplace(\phi)+\grad(\phi)^2
since incompressible, div(v)=0,i.e., laplace(\phi)=0
so, we can get the result.

【在 r*f 的大作中提到】
:
: (\grad{phi}^2)=\phi*\laplace{\phi}+(\grad{phi}^2) ???
: Is there any type error?

1 (共1页)
进入Science版参与讨论
相关主题
Re: [转载] What is Dark Matter and Dark Energy?谁来推荐几本有关积分方程的书?
偶的看法--顺流而下积分求解--谢谢先
Re: [转载] 超光速得到证实爱因斯坦被指“欺世盗名”光滑非齐次项的一维波动方程有非光滑解的例子?
[转]不要误解王利军“超光速”实验的意义Weistrass的逼近定理
[转载] Urgent: A simple problem. Thanks!Re: 希格斯场一问
A simple problem updated versionRe: Problem again
Re: 请问: 矢量场如何分解Re: what is virial?
Re: APS article about recent "superluminal light" experimentIs Laplacian operator Hermitian?
相关话题的讨论汇总
话题: phi话题: rho话题: grad话题: da话题: laplace