由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Science版 - 淋雨的概率
相关主题
Re: Help in Markov Chain 我 bu 相信永动机..
Standard solution Re: [转载] 概率难题Solution to "A math problem"
我的答案Re: 淋雨的概率linear or nonlinear?
一个极限问题第二定律和可逆,不可逆的关系
Re: 问个最小二乘法的问题Re: 第二定律和Liouville theorem.
出两道数学分析题目给大家做做Re: princess problem
问题:人体基因的信息量有多大? (转载)我们老师的答案Re: 一道TRICKY的概率题
Re: 反过来还是?Re: 概率的问题是可以在本版问的吧?
相关话题的讨论汇总
话题: markov话题: location话题: umbrella话题: p2话题: prob
进入Science版参与讨论
1 (共1页)
H****h
发帖数: 1037
1
某人每天步行上下班。每趟路程上下雨的概率是p(0 他在家里和办公室里共放了n把伞。上下班时,如果没有雨,就不随身带伞;
如果下了雨且手边有伞就打伞,如果没伞就只好挨雨淋了。
求证:无论开始状态如何,单程挨雨淋的概率都将趋于一个定值,并计算之。
I***e
发帖数: 1136
2
I forgot what it was called. But the content says:
If a Markov chain is recurrent and irreducible and have finite
states, then the limiting measure will be the stationary measure
no matter what initial measure you choose. ( Recurrent means with
probability one the Markov chain will revisit its starting point.
Irreducible means you can reach any state from any other state
if you wait long enough. )
It is contained in the Markov chain chapter of Richard Durrett's
book.
Thanks, all.
Icare

【在 H****h 的大作中提到】
: 某人每天步行上下班。每趟路程上下雨的概率是p(0: 他在家里和办公室里共放了n把伞。上下班时,如果没有雨,就不随身带伞;
: 如果下了雨且手边有伞就打伞,如果没伞就只好挨雨淋了。
: 求证:无论开始状态如何,单程挨雨淋的概率都将趋于一个定值,并计算之。

I***e
发帖数: 1136
3
You are right... I mis-configured the markov structure.
So is the right answer equal to:
PROB = p(1-p)/(n+1-p) ?
This structure is a bit more complex than what I imagined.
If we identify situations by (number, localtion) where
number
is the number of umbrellas at office, and location is the
current location
of the guy. Then the stationary distribution is:
Status: (n,home) (n,office) (n-1,home)
(n-1,office) ...
PROB: p1 p2 p2 p2
Status:
I***e
发帖数: 1136
4

It seemes that I have to defend my solution a
little more, although the theoretical reasoning
is quite enough... :)
It is wrong to assume that your location and
the location of the umbrella are independent.
Intuitively, when p is close to 1, after a few
steps, your deterministic strategy of carrying the
umbrella whenever rains will guarantee that the
probability of having the umbrella at your current
location is much higher than the counterpart if
p is small. So, as p approaches 1, you are more

【在 H****h 的大作中提到】
: 某人每天步行上下班。每趟路程上下雨的概率是p(0: 他在家里和办公室里共放了n把伞。上下班时,如果没有雨,就不随身带伞;
: 如果下了雨且手边有伞就打伞,如果没伞就只好挨雨淋了。
: 求证:无论开始状态如何,单程挨雨淋的概率都将趋于一个定值,并计算之。

1 (共1页)
进入Science版参与讨论
相关主题
Re: 概率的问题是可以在本版问的吧?Re: 问个最小二乘法的问题
Re: A probability problem 出两道数学分析题目给大家做做
Re: 问个组合数学问题问题:人体基因的信息量有多大? (转载)
Re: 数列问题Re: 反过来还是?
Re: Help in Markov Chain 我 bu 相信永动机..
Standard solution Re: [转载] 概率难题Solution to "A math problem"
我的答案Re: 淋雨的概率linear or nonlinear?
一个极限问题第二定律和可逆,不可逆的关系
相关话题的讨论汇总
话题: markov话题: location话题: umbrella话题: p2话题: prob