c*******n 发帖数: 112 | 1 请问一个数学问题:
x1+x2+...+xn=N
共有多少组解。 | k*******y 发帖数: 56 | 2 证明也很简单
先考虑真正的正整数情况:
有N个ball排列在一条直线上,每两个ball的间隙可以放一个 line
一共n-1个line,放法一工就是choose(N-1,n-1)
这样这些line 把 N 个 ball 分成了有序的n 个部分
每个部分就是一个xi,他们的和是N
再考虑非负整数,只要把每个xi加1,就成了上一中情况
就是choose(N+n-1,n-1)=choose(N+n-1,n-1) | d****t 发帖数: 26 | 3 No, that is not hard for human.
use the formula y^2 + y^3 + ... + y^6 = y^2 (1 - y^5)(1 + y + y^2 +...) and
y^3 + y^4 + ... + y^7 = y^3 (1 - y^5)/(1 + y + y^2 +...) and
y^8 + y^9 + ... = y^8 (1 + y + y^2 +...)
also (1 + y + y^2 + y^3 + ...)^3 = sum of (k+2)(k+1)/2 * y^k
from k=0 to infinite
(Prove this one!)
(1 - y^5)^2 = something definitely your know
Then your can easily get the answer.
A further ques |
|