由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Statistics版 - 很惭愧的问一个简单的regression algebra.
相关主题
请教一下ridge regression。如何确定什么情况time series,什么情况linear reg?
关于subspace分解的问题regression problem - go confused
问一个关于linear regression的error假设问题ordinary linear regression assume数据是Normal distribution么?
Linear regression model 问题请教紧急求助,问到MULTIPLE REGRESSION的题
SAS macros for probing two-way interaction using johnson-n如果dep variable严重skewed,如何做ordinal regression?
请教LINEAR REGRESSION基本问题请问bank里面什么时候用OLS而不用logistic regression?
如何建立多重变量回归模型?包子,请教关于OLS和LAD regression的SAS问题
请教, linear regression model问题SAS question - baozi
相关话题的讨论汇总
话题: svd话题: regression话题: x2话题: x1话题: data
进入Statistics版参与讨论
1 (共1页)
q**j
发帖数: 10612
1
简单regress 的解是
b =(X'X)^(-1) X'y。
如果把X和Y都分成对应的两块就有
b_1 = (X1'X1)^(-1) X1'Y1
b_2 = (X2'X2)^(-1) X2'Y2
请问这个b1,b2和b是怎么联系到一起的?
A*******s
发帖数: 3942
2
is this relevant to ur question?
http://www.jstor.org/pss/2684974

【在 q**j 的大作中提到】
: 简单regress 的解是
: b =(X'X)^(-1) X'y。
: 如果把X和Y都分成对应的两块就有
: b_1 = (X1'X1)^(-1) X1'Y1
: b_2 = (X2'X2)^(-1) X2'Y2
: 请问这个b1,b2和b是怎么联系到一起的?

n*****n
发帖数: 3123
3
关系比较复杂,不过应该可以做出来。
可以先考虑一个简单情况,就是X和Y都拿掉一个observation, 这个许多书上都有。
T****s
发帖数: 915
4
(X1'X1 + X2'X2) b = X1'X1 b1 + X2'X2 b2

【在 q**j 的大作中提到】
: 简单regress 的解是
: b =(X'X)^(-1) X'y。
: 如果把X和Y都分成对应的两块就有
: b_1 = (X1'X1)^(-1) X1'Y1
: b_2 = (X2'X2)^(-1) X2'Y2
: 请问这个b1,b2和b是怎么联系到一起的?

s*****n
发帖数: 3416
5
what do you mean by "把X和Y都分成对应的两块"?
I don't see how you can do it, unless this is not simple regression. instead
it is multivariate regression.

【在 q**j 的大作中提到】
: 简单regress 的解是
: b =(X'X)^(-1) X'y。
: 如果把X和Y都分成对应的两块就有
: b_1 = (X1'X1)^(-1) X1'Y1
: b_2 = (X2'X2)^(-1) X2'Y2
: 请问这个b1,b2和b是怎么联系到一起的?

s*****n
发帖数: 3416
6
that is what I thought, x1 orthogonal to x2.
but it is unclear what lz means. the notation is very vague.
A*******s
发帖数: 3942
7
is it equivalent to the following problem?
say we have old data and we already have OLS regression estimates. Now new
data (more observations) come in but we don't want to do SVD or get inverse
based on the whole X'X matrix. Instead we would like to use some fast matrix
updating algorithm to update the regression coefficient estimates.
Am I correct?
s*********2
发帖数: 106
8
我先前理解错LZ的意思了,他是不是说把一个dataset分成两部分做regression。这两
部分分别做regression和用整个dataset做regression,coefficient estimates之间的
关系?
q**j
发帖数: 10612
9
you are more than correct!

inverse
matrix

【在 A*******s 的大作中提到】
: is it equivalent to the following problem?
: say we have old data and we already have OLS regression estimates. Now new
: data (more observations) come in but we don't want to do SVD or get inverse
: based on the whole X'X matrix. Instead we would like to use some fast matrix
: updating algorithm to update the regression coefficient estimates.
: Am I correct?

s*****r
发帖数: 790
10
then there will be no relation. theoretically, you can have completely
different results, without any fixed relation. because the two parts are
independent.

【在 s*********2 的大作中提到】
: 我先前理解错LZ的意思了,他是不是说把一个dataset分成两部分做regression。这两
: 部分分别做regression和用整个dataset做regression,coefficient estimates之间的
: 关系?

F******n
发帖数: 160
11
In that case, it is not a trivial problem, but it could be done by applying
the incremental SVD algorithm.
This efficient/adaptive algorithm was originally given by a guy (Matthew)
from Mitsubishi research lab. You can easily google that paper.
The main point relevant to the LS regression:
b = (X'X)^(-1) (X'y) (1)
is that, matrix inversion (X'X)^(-1) is essentially an SVD problem. As your
new data come in, you should sort of have an updated X and y, and
consequently an updated X'X. In above equation (1), two parts can be
adaptively updated (one trivial + one incremental SVD):
#1: it's trivial to buffer and adaptively update (X'y) part, for which idea
should be straight: old-data-sum-buffer + new-data-sum => updated-result.
#2: you can apply incremental SVD algorithm to get the solution of (X'X)^(-1
), by buffering old SVD solution, and adding new data information. In a
nutshell, the idea is that, new data "vectors" can be decomposed into: i)
the part falling into the old SVD subspace and, ii) the part orthogonal to
that subspace span. Only the orthogonal/"new" component needs to be re-
computed for updating the SVD subspace. This is much more efficient than re-
computing the whole SVD problem, namely, old + new data and re-solving
equation (1) from scratch. This incremental algorithm is specifically done
by employing a QR decomposition, followed by a small (or relatively cheap)
SVD in "new" subspace.
Your two parts of data could be in any of following three scenarios:
1) they have identical distribution
2) they have partially overlapping distribution
3) they have totally independent distribution
for any of which, the above adaptive/incremental algorithm should be generic
enough to work well.
Hope this helps.

inverse
matrix

【在 q**j 的大作中提到】
: you are more than correct!
:
: inverse
: matrix

F******n
发帖数: 160
12
By the way, this is just my personal quick idea/suggestion. You may want to
elaborate and double-check it for technical details.
In case you got other ideas/solutions, it would be nice to share it, or your
final closure here, too.

applying
your

【在 F******n 的大作中提到】
: In that case, it is not a trivial problem, but it could be done by applying
: the incremental SVD algorithm.
: This efficient/adaptive algorithm was originally given by a guy (Matthew)
: from Mitsubishi research lab. You can easily google that paper.
: The main point relevant to the LS regression:
: b = (X'X)^(-1) (X'y) (1)
: is that, matrix inversion (X'X)^(-1) is essentially an SVD problem. As your
: new data come in, you should sort of have an updated X and y, and
: consequently an updated X'X. In above equation (1), two parts can be
: adaptively updated (one trivial + one incremental SVD):

T*******I
发帖数: 5138
13
这个问题看起来像是分段回归,但不确定,因为楼主没有说清楚是如何分的。在总样本
量足够大的条件下,不论怎样分,部分回归的统计量与全体回归的统计量之间的关系可
以用一个Chi-square统计量来判断其差异显著性。请参见我的分段回归论文中所阐述的
相关内容。

【在 q**j 的大作中提到】
: 简单regress 的解是
: b =(X'X)^(-1) X'y。
: 如果把X和Y都分成对应的两块就有
: b_1 = (X1'X1)^(-1) X1'Y1
: b_2 = (X2'X2)^(-1) X2'Y2
: 请问这个b1,b2和b是怎么联系到一起的?

F******n
发帖数: 160
14
分段回归、部分回归、全体回归
挺好,挺好,呵呵

【在 T*******I 的大作中提到】
: 这个问题看起来像是分段回归,但不确定,因为楼主没有说清楚是如何分的。在总样本
: 量足够大的条件下,不论怎样分,部分回归的统计量与全体回归的统计量之间的关系可
: 以用一个Chi-square统计量来判断其差异显著性。请参见我的分段回归论文中所阐述的
: 相关内容。

1 (共1页)
进入Statistics版参与讨论
相关主题
SAS question - baoziSAS macros for probing two-way interaction using johnson-n
R里面regression 变量选择的package?请教LINEAR REGRESSION基本问题
请教一个关于logistic regression参数的问题如何建立多重变量回归模型?
Regression Question请教, linear regression model问题
请教一下ridge regression。如何确定什么情况time series,什么情况linear reg?
关于subspace分解的问题regression problem - go confused
问一个关于linear regression的error假设问题ordinary linear regression assume数据是Normal distribution么?
Linear regression model 问题请教紧急求助,问到MULTIPLE REGRESSION的题
相关话题的讨论汇总
话题: svd话题: regression话题: x2话题: x1话题: data