由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Statistics版 - 一道regression 面试题请教
相关主题
关于subspace分解的问题讨论一道面试题
A question on one-step vs. Two-step regression问一个linear regression 的弱问题。
为什么不能把ABLINE加到散点图中了请教问题
R里面regression 变量选择的package?问一个regression的弱问题
求教一道google的面试题,关于multicollinearity的intern 面经
请问R-square很弱,但是independent variables的p-value<0.05怎么解释?一道统计面试题
logistic regression结果释疑,解读Logistic Regression model fit 的指标看哪一组较合适呢?
问一道面试题 (带包子)请教一个相关性分析(correlation)的问题
相关话题的讨论汇总
话题: x1话题: x2话题: squared话题: regression话题: m1
进入Statistics版参与讨论
1 (共1页)
k*******g
发帖数: 13
1
To predict y(t), we use two candidate vars x1(t) x2(t) separately and get
two linear regression models:
M1: y(t)=b1*x1(t)+b0
M2: y(t)=b1*x2(t)+b0
The coefficient of determination, R-squared, for M1 and M2 are 0.01 and 0.02
If we run a new regression model with both x1 and x2,
M: y(t)=b1*x1(t)+b2*x2(t)+b0
问:lower bound and upper bound of M's R-squared 是多少?这两个extreme case
分别会有什么问题?
多谢指教!
d******e
发帖数: 7844
2
0.02~1

02
case

【在 k*******g 的大作中提到】
: To predict y(t), we use two candidate vars x1(t) x2(t) separately and get
: two linear regression models:
: M1: y(t)=b1*x1(t)+b0
: M2: y(t)=b1*x2(t)+b0
: The coefficient of determination, R-squared, for M1 and M2 are 0.01 and 0.02
: If we run a new regression model with both x1 and x2,
: M: y(t)=b1*x1(t)+b2*x2(t)+b0
: 问:lower bound and upper bound of M's R-squared 是多少?这两个extreme case
: 分别会有什么问题?
: 多谢指教!

k*******g
发帖数: 13
3
Why 0.02~1? Could you please explain?
I think maybe one extreme case is that x1 and x2 are perfectly correlated.
But it makes M1 and M2 having same R-squared, which contradicts with their R
-squared values.
Is the other extreme case X1 and X2 have correlation 0? How does it make R-
squared of M to be 1?
Thanks!

【在 d******e 的大作中提到】
: 0.02~1
:
: 02
: case

k*******a
发帖数: 772
4
I think it is 0.02 - 0.03
x1 can explain 1% error and x2 can explain 2% error
so x1 together with x2 can explain at least 2% and at most 3% (when x1 and
x2 uncorrelated) of error
a****g
发帖数: 8131
5
there is a case called suppressor

R

【在 k*******g 的大作中提到】
: Why 0.02~1? Could you please explain?
: I think maybe one extreme case is that x1 and x2 are perfectly correlated.
: But it makes M1 and M2 having same R-squared, which contradicts with their R
: -squared values.
: Is the other extreme case X1 and X2 have correlation 0? How does it make R-
: squared of M to be 1?
: Thanks!

k*******g
发帖数: 13
6
Thank you!
When will it equal 0.02? I think it is the case that the variation explained
by x1 has also been explained by x2, but when will it happen? Thanks!

【在 k*******a 的大作中提到】
: I think it is 0.02 - 0.03
: x1 can explain 1% error and x2 can explain 2% error
: so x1 together with x2 can explain at least 2% and at most 3% (when x1 and
: x2 uncorrelated) of error

d******e
发帖数: 7844
7
> y = rnorm(100)
> x1 = rnorm(100)
> cor(x1,y)
[1] -1.254646e-05
> x2 = x1 + 0.0000001*y
> cor(x2,y)
[1] -1.243022e-05
> cor(x2-x1,y)
[1] 1
自己试去。

【在 k*******a 的大作中提到】
: I think it is 0.02 - 0.03
: x1 can explain 1% error and x2 can explain 2% error
: so x1 together with x2 can explain at least 2% and at most 3% (when x1 and
: x2 uncorrelated) of error

d******e
发帖数: 7844
8
他告诉你的结论是错的。

explained

【在 k*******g 的大作中提到】
: Thank you!
: When will it equal 0.02? I think it is the case that the variation explained
: by x1 has also been explained by x2, but when will it happen? Thanks!

s*****n
发帖数: 2174
9
我给你个直观的解释。
y_n = a + b * x1_n + e
这个模型里面的R^2, 可以看成是n维空间中向量Y和向量X1
(1维线性子空间)之间夹角的a余弦平方
R_1^2 = Cos(a)^2
同理第二个模型里面的R^2, 可以看成是n维空间中向量Y和向量X2
(1维线性子空间)之间夹角的b余弦平方
R_2^2 = Cos(b)^2
现在你要把X1和X2一起放进来, 等于是要把向量Y向X1和X2生成
的2维线性子空间中投影。
这样的问题就成了初等立体几何的问题, 已知一向量y与一平面上
两个向量x1和x2的夹角分别为a和b, 问y与此平面夹角c的余弦。
c最小可以是0, 最大是min(a, b), 于是其余弦平方最大可以是1,
最小则是Cos(min(a,b))^2
就不画图了, 不明白的话, 用三根筷子摆一下就一目了然。

correlated.
their
R
make R-

【在 k*******g 的大作中提到】
: Why 0.02~1? Could you please explain?
: I think maybe one extreme case is that x1 and x2 are perfectly correlated.
: But it makes M1 and M2 having same R-squared, which contradicts with their R
: -squared values.
: Is the other extreme case X1 and X2 have correlation 0? How does it make R-
: squared of M to be 1?
: Thanks!

G**7
发帖数: 391
10
Please type in English to explain. Thank you.
k****n
发帖数: 165
11
犀利。

【在 s*****n 的大作中提到】
: 我给你个直观的解释。
: y_n = a + b * x1_n + e
: 这个模型里面的R^2, 可以看成是n维空间中向量Y和向量X1
: (1维线性子空间)之间夹角的a余弦平方
: R_1^2 = Cos(a)^2
: 同理第二个模型里面的R^2, 可以看成是n维空间中向量Y和向量X2
: (1维线性子空间)之间夹角的b余弦平方
: R_2^2 = Cos(b)^2
: 现在你要把X1和X2一起放进来, 等于是要把向量Y向X1和X2生成
: 的2维线性子空间中投影。

b********8
发帖数: 3059
12
厉害

【在 s*****n 的大作中提到】
: 我给你个直观的解释。
: y_n = a + b * x1_n + e
: 这个模型里面的R^2, 可以看成是n维空间中向量Y和向量X1
: (1维线性子空间)之间夹角的a余弦平方
: R_1^2 = Cos(a)^2
: 同理第二个模型里面的R^2, 可以看成是n维空间中向量Y和向量X2
: (1维线性子空间)之间夹角的b余弦平方
: R_2^2 = Cos(b)^2
: 现在你要把X1和X2一起放进来, 等于是要把向量Y向X1和X2生成
: 的2维线性子空间中投影。

1 (共1页)
进入Statistics版参与讨论
相关主题
请教一个相关性分析(correlation)的问题求教一道google的面试题,关于multicollinearity的
大牛进,Quantile Regression in SAS请问R-square很弱,但是independent variables的p-value<0.05怎么解释?
急求统计 tutorlogistic regression结果释疑,解读
请教一个logistic regression的问题问一道面试题 (带包子)
关于subspace分解的问题讨论一道面试题
A question on one-step vs. Two-step regression问一个linear regression 的弱问题。
为什么不能把ABLINE加到散点图中了请教问题
R里面regression 变量选择的package?问一个regression的弱问题
相关话题的讨论汇总
话题: x1话题: x2话题: squared话题: regression话题: m1