由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Statistics版 - any one did EM to find MLE of mixed effects model in R
相关主题
Problem with Maximum Likelihood Estimation[求助]Gauss, R, Matlab, or SAS?
问一个关于linear regression的error假设问题求几个统计学巨擘的名字,像C.R.Rao这种级别的,最好是在美国的
在线急等:做maximum likelihood estimation,用optimization怎么都的不出正确的数值Regression model 不用 test normality?
问一个R问题关于Generalized Linear Mixed Models(GLMMs)的问题
R LOOP自动退出的问题请教R和 usenet的问题
MCMC算法的Posterior Std. 一定是减少的么?用EM求的MLE,但是observed likelihood 怎么算呢
一个数理统计问题(解决)[question] sample estimation of eigenvalues
问一个概率问题likelihood ratio asymptotic approximations
相关话题的讨论汇总
话题: sigma话题: theta话题: psi话题: em话题: beta
进入Statistics版参与讨论
1 (共1页)
c*****l
发帖数: 1493
1
simulating a very basic model: Y|b=X*\beta+Z*b +\sigma^2* diag(ni);
b~N(0,\psi) #bivariate normal
where b is the latent variable, Z and X are ni*2 design matrices, sigma is
the error variance,
Y are longitudinal data, i.e. there are ni measurements for object i.
Parameters are \beta, \sigma, \psi; call them \theta.
I wrote a EM, the M step is to maximize the log(f(Y,b;\theta)) as the
regular way,
the E step involves the evaluation of E step, using Gauss Hermite
approximation.
All are simulated data. X and Z are naive like cbind(rep(1,m),1:m)
After 200 iterations, the estimated \beta converges to the true value while
\sigma and \psi do not.
Basically the estimated \sigma keeps increasing..
I am confused since the \hat{\beta} requires \sigma and \psi from previous
iteration. If something wrong then all estimations should be incorrect...
Another question is that I calculated the logf(Y;\theta) to see if it
increases after updating \theta.
Seems decreasing.....
I thought the X and Z are linearly dependent would cause some issue but I
also changed the Z.
Can any one give some help? I am stuck it for days...
I can send the code to you. Seems
l******n
发帖数: 9344
2
check your formula and codes with simple example
These two things are very prone to have problems.

【在 c*****l 的大作中提到】
: simulating a very basic model: Y|b=X*\beta+Z*b +\sigma^2* diag(ni);
: b~N(0,\psi) #bivariate normal
: where b is the latent variable, Z and X are ni*2 design matrices, sigma is
: the error variance,
: Y are longitudinal data, i.e. there are ni measurements for object i.
: Parameters are \beta, \sigma, \psi; call them \theta.
: I wrote a EM, the M step is to maximize the log(f(Y,b;\theta)) as the
: regular way,
: the E step involves the evaluation of E step, using Gauss Hermite
: approximation.

1 (共1页)
进入Statistics版参与讨论
相关主题
likelihood ratio asymptotic approximationsR LOOP自动退出的问题
请高手给解释一下Bayesian Dynamic Linear Model?MCMC算法的Posterior Std. 一定是减少的么?
monte carlo mean of ratio estimattion一个数理统计问题(解决)
请教LINEAR REGRESSION基本问题问一个概率问题
Problem with Maximum Likelihood Estimation[求助]Gauss, R, Matlab, or SAS?
问一个关于linear regression的error假设问题求几个统计学巨擘的名字,像C.R.Rao这种级别的,最好是在美国的
在线急等:做maximum likelihood estimation,用optimization怎么都的不出正确的数值Regression model 不用 test normality?
问一个R问题关于Generalized Linear Mixed Models(GLMMs)的问题
相关话题的讨论汇总
话题: sigma话题: theta话题: psi话题: em话题: beta