h***t 发帖数: 2540 | 1 请问对于binary classification,如果positive observation很少,也就是整个数据非
常unbalanced, 有没有比较好的建模方法? | f*******n 发帖数: 2665 | 2 oversampling
【在 h***t 的大作中提到】 : 请问对于binary classification,如果positive observation很少,也就是整个数据非 : 常unbalanced, 有没有比较好的建模方法?
| z**********i 发帖数: 12276 | 3 zero inflated negative binomial.
【在 h***t 的大作中提到】 : 请问对于binary classification,如果positive observation很少,也就是整个数据非 : 常unbalanced, 有没有比较好的建模方法?
| D**u 发帖数: 288 | 4 1st choice:
oversampling/stratified sampling, add weight to the observations, both sas
and R can do this easily.
2nd choice:
rather simple negative binomial model than any zero inflated models for the
ease of avioding mixture model
of course, you can always try zero inflated models
a good explanation is here:
http://www.statisticalhorizons.com/zero-inflated-models | s*********e 发帖数: 1051 | 5 对binary classification, zero inflated nega. binomial根本不合适。
the
【在 D**u 的大作中提到】 : 1st choice: : oversampling/stratified sampling, add weight to the observations, both sas : and R can do this easily. : 2nd choice: : rather simple negative binomial model than any zero inflated models for the : ease of avioding mixture model : of course, you can always try zero inflated models : a good explanation is here: : http://www.statisticalhorizons.com/zero-inflated-models
| D**u 发帖数: 288 | 6 Agree, forgot it is "binary"
【在 s*********e 的大作中提到】 : 对binary classification, zero inflated nega. binomial根本不合适。 : : the
|
|