t****k 发帖数: 1095 | 1 两个model, 一个的R2提高很多,但是AICc也大不少,这个什么原因呢?变量的VIF都小
于5,大多在4一下。 | y*****w 发帖数: 1350 | 2 This is all about the number of model parameter estimates.
AICc = AIC + 2k(k+1)/(n-k-1) = 2k - 2lnL + 2k(k+1)/(n-k-1) = 2kn/(n-k-1) -
2lnL
Adjusted R-squared = 1 - (RSS/(n-k-1)) / (TSS/(n-1))
For AICc, assuming a fixed maximum likelihood, the higher the number of
model parameters (k), the larger 2kn/(n-k-1), and thus the larger the AICc;
whereas for adjusted R-squared, while the residual sum of squares (RSS)
always decreases as the number of model parameters increases, at the same
time (n-k-1) decreases as well, such that RSS/(n-k-1) may increase or
decrease. | t****k 发帖数: 1095 | 3 谢谢。两个model的independent variables一样多,但是第二个estimate 的parameter
是要多, AICc算出来大了10以上,但是adjusted R2提高了一倍。这种情况到底哪一个
更好呢?看文献说如果AICc差10以上,就不应该选AICc大的model,可是R2差这么多,也
不考虑吗?
;
【在 y*****w 的大作中提到】 : This is all about the number of model parameter estimates. : AICc = AIC + 2k(k+1)/(n-k-1) = 2k - 2lnL + 2k(k+1)/(n-k-1) = 2kn/(n-k-1) - : 2lnL : Adjusted R-squared = 1 - (RSS/(n-k-1)) / (TSS/(n-1)) : For AICc, assuming a fixed maximum likelihood, the higher the number of : model parameters (k), the larger 2kn/(n-k-1), and thus the larger the AICc; : whereas for adjusted R-squared, while the residual sum of squares (RSS) : always decreases as the number of model parameters increases, at the same : time (n-k-1) decreases as well, such that RSS/(n-k-1) may increase or : decrease.
| y*****w 发帖数: 1350 | 4 If one model is a full model and the other is a reduced model, have you run
a likelihood ratio test?
parameter
【在 t****k 的大作中提到】 : 谢谢。两个model的independent variables一样多,但是第二个estimate 的parameter : 是要多, AICc算出来大了10以上,但是adjusted R2提高了一倍。这种情况到底哪一个 : 更好呢?看文献说如果AICc差10以上,就不应该选AICc大的model,可是R2差这么多,也 : 不考虑吗? : : ;
| t****k 发帖数: 1095 | 5 第一个model是用spss automated linear regression筛选的10个most significant
variables. 然后第二个model是基于这是个变量建立的geographically weighted
regression.
run
【在 y*****w 的大作中提到】 : If one model is a full model and the other is a reduced model, have you run : a likelihood ratio test? : : parameter
| p***r 发帖数: 920 | 6 Because one of the model you use have missing values in one of the variable,
and records are dropped, rendering smaller AICs |
|