k*****g 发帖数: 1 | 1 粉红好像普遍素质差。原来就知道差,没想到这么差。
原来觉得可能是一二年级研究生的差生的程度,可以讨论一下的。
没想到大致大约是大学一二年级还没入门的程度(学历到可能研究生,
或博士毕业回大陆),
而且在那个程度上只是搜索到一些名词后就大谈
博士博士后一两年有一定了解后才讨论的研究探索内容。
粉红对事情的了解限于未入门阶段,甚至没到“形而上学”的通,
更谈不上辩证的融会贯通的通,当然当不上必然王国的通。
举例说。他们讨论“泛函分析”及相关的东西就处在没入门的概念阶段。
说几点吧。
·宏观地人类试图了解无限。有三个基本方向:
无限集合的量级(势、基数(从可数无限出发,考虑集合的子集们所成的集合递推));
无限“远”及有限“近”的东西(点集拓扑)的区分;
及无限“维”。
到目前为止的泛函分析意在是研究上述三点中的最后一点,
宣称是在研究“无限维的空间”及其上的算子
(或其上的泛函,如果算子的值空间是数域的话)。
当然起步是无限维的线性空间(向量空间)及其上的线性算子
(或其上的线性泛函,如果线性算子的值空间是数域的话)。
要研究“非有限维的线性空间”,从维数入手。这里有一个基本的困难,
任意的非有限维的线性空间的无限线性维的维数都是不可数无限。
这从Bair纲容易推出。
人类对无限的处理所能达到的无限的基本量级是可数无限。
因此不对非有限维的线性空间们附加结构(人类)是没法研究它们的。
基本的手法是加上拓扑使得线性空间的两个基本运算
加法和数乘运算在该拓扑下是连续的,这就是拓扑线性空间,
正式名字是拓扑向量空间。这样就可以谈论分析意义上的可数维数,
即可数基的线性表示的(拓扑)逼近们是全空间。
单“泛泛讨论”而没有进一步的结构的拓扑向量空间可以产生许多数学结果,
但对许多数学上和物理上重要的空间,比如勒贝格可积函数空间,没有帮助。
故有进一步的细化:
拓扑向量空间——》局部凸空间————》赋范空间————》内积空间等,
只列主要的几个,中间还有很多。
人们希望当赋范空间的一个点列中的点们
变得越来越靠近(有范数产生的)距离趋于零时它确实收敛于空间的一个点。
这个性质称空间的完备性。
完备的赋范线性空间一般称为Banach空间。
(例子:有限区间上的勒贝格可积函数空间)
完备的内积线性空间一般称为Hilbert空间。
(例子:有限区间上的勒贝格平方可积函数空间)
大陆本科三年级的泛函分析基本上是从赋范空间开讲的。
粉红们讨论的基本上前两三节的内容。
现行的泛函分析宣称研究无限维。但它有三个问题。
一。它基本上没有触及无限维的实质,
基本手法是把无限维约化成
一维空间和该空间的补(这个补是无限维的)。
比如泛函分析中重要的
泛函延拓定理
及在泛函分析中有核心地位的
黎斯表现定理
的证明基本上就是约化成一维。
它本质上还是一维的。
(代数、几何、组合)拓扑倒是真的在研究2维3维4维等有限维的。
二。它的理论多数是基于线性的。
至于非线性泛函分析则不是系统的学科,它只是把散见的拓扑度临界点
等泛泛的方法放在一起。
三。无限维Hilbert的单位球面是可缩的。
这实际上“可能是致命”的一击。因为这表示如果只是泛泛而论所有的东西
都会收缩到一点。
故对函数空间相关的非线性偏微分方程问题,必须具体问题具体方法解决。
很难有统一的方法去解决。这意味着
人们不能用像研究代数一样去研究泛函分析或非线性泛函分析。而必须是
针对具体问题发展出解决方法。
有前车之鉴。有一位曾经很有名的数学家Felix Browder(其父是美国共产党领袖)。
看文献,美国数学会曾经有一个计划想出一个类似希尔伯特23问题
的纲领。Felix Browder是这个计划的领衔数学家,其它名家比如
陈省身只是写其中一个部分。
他就是试图按这个一般的代数路子去研究泛函分析。当时看上去很伟大很雄心勃勃。
他做了很多文章,
比如单调算子方法结合上下解(他必须结合)解反应扩散方程等。最后
他的结果很多可能是空集。比如就算所做的方程中你定义的算子是单调的
也有上下解,该问题不见得有解。
所以你去查wikipedia,他的页面缩得很小,
也并没有关于他的具体的数学成就的介绍。
https://en.wikipedia.org/wiki/Felix_Browder
顺便说有人讲到傅立叶理论、勒贝格可积、勒贝格平方可积、广义函数、索波列夫空间
等。
傅立叶理论研究要用到勒贝格可积函数空间(勒贝格平方可积函数空间)
是因为它是完备的赋范空间即Babach空间(完备的赋内积空间即Hilbert空间)。而三
角函数系按照在勒贝格平方可积函数空间中是完备系。
广义函数在偏微分方程中重要是广义函数解较容易得到,
而广义函数解常可(并不总是)由一可积函数产生,
这个函数成为弱解。由弱解常可(并不总是)(比如在椭圆型的情形)产生
经典意义上的解。
粗略地说,索波列夫空间的意义主要是两方面:
1. 由弱导数的可积性产生原来的函数高次可积性。
2. 函数空间的连续嵌入和紧嵌入。这在解非线性中很重要。
比如 求方程u=f(u)的解 函数u。这里f 是非线性的。可以这样做:
给函数u_n,自然产生
f(u_n),这新函数称之为u_{n+1},即
u_{n+1}=f(u_n)。
如这个算子u_n->u_{n+1}是连续的紧的,并且解有先验估计,
{u_n}有收敛子列:这收敛子列还记为{u_n}。
u_n->v,u_{n+1}->v,
加上连续性
可得解v:
v=f(v)。 |
k*****g 发帖数: 1 | |
p**********t 发帖数: 50 | 3 say english good no good |
f*******4 发帖数: 1 | |
k*****g 发帖数: 1 | 5
谢谢。美国的新闻界除了华尔街日报不那么左之外,
都是左派在控制。纽时是他们的头。
左派误事呀,哪国都是这个情况。
【在 f*******4 的大作中提到】 : 文学城https://www.wenxuecity.com/news/2021/03/11/10384653.html
|
k*****g 发帖数: 1 | 6 这个Felix Browder深受其父(美国共产党领袖)的影响,热衷于
宏大虚幻的乌托邦理想。他当时在数学界地位很高,曾得到
National Medal of Science。这是美国科学家的最高荣誉。
(华人中杨振宁、陈省身、丘成桐得到过此荣誉,李政道没有。)
他也曾任美国数学学会的主席。
但他做的“建立通过宏大的非线性泛函分析的一般理论来应用到具体的
非线性问题解决问题”的路子有着根本性的错误。他的数学结果多数
是空集,及满足他构造的系统的东西是不存在的。
他的三弟Andrew Browder也是数学家,没那么偏激,但也很左。这种
源自父亲的空想也影响到他的数学研究。他也是研究宏大空洞的
“函数代数”(Function Algebras),没什么用。
他的二弟William Browder 没那么偏激,也没有那么左。
数学做得很好。是美国的大小两院的院士。他有个学生
Dennis Sullivan有很伟大的数学贡献,获得过Wolf奖。
第三代
Felix Browder的儿子
William Felix "Bill" Browder 威廉(昵称比尔)是著名的
全球马格尼茨基人权问责法
(The Global Magnitsky Human Rights Accountability Act
的主角之一)。他开始时倒是接受爷爷和父亲的极左的教训,比较务实。
他担任赫米蒂奇资产管理公司Hermitage Capital的首席执行官。
后爷爷和父亲的极左影响的“余威”尚在,
返还俄罗斯,放弃了美国公民身份,后被拒绝进入俄罗斯。后来吃了不少苦,
弄出全球马格尼茨基人权问责法。
威廉有一个长兄,汤姆·布劳德也不像爷爷和父亲那么左。他研究较为务实与客观世界
的物理。他15岁时进入芝加哥大学,成为一名顶尖的粒子物理学家。
Browder爷孙三代人都是遗传天赋极高的人。看他们的照片就知道
他们都是人群中极其聪明的极少数精英。
但左的世界观影响了他们家族中左的成员的人生和成就。
左派由两部分人组成
一是极少数极其精明的少数“忽悠”领袖。
二是知识程度认识水平和智力较低的底层人民,及左派粉红。
前者靠忽悠后者而生存。
Browder家族无疑是前者。他们作为绝顶聪明的社会精英,尚深受
左之害,作为第二类的底层的左派粉红,没有天赋,没有资源,什么都没有,他们的人
生能好到哪里去?
不仅他们自己受害,还让下一代受害。
因为下一代是天然地认为父亲是对的。
他们可能一生不会醒悟,一直左,有一个失败的人生。
他们可能会醒悟知道不能左,但等他们开始醒过来时,
失去人生中最为关键的十年:因为他们醒过来时,
来自不那么左的家庭的同龄人同代人
已经抓住了时代和社会给与他们这代人的机会,
打好了事业和家庭的基础,
而他们才刚开始真正的人生。
人家的脚已经在鞋子里了,你要进这只鞋子,必须先把那只脚拔出来。
这个难度都伸进空鞋子大多了。
这是我给前一段时间给一位名叫“TofE”还是“EofT”的极左粉红网友
讲过的道理。他似乎有所醒悟。
:有前车之鉴。有一位曾经很有名的数学家Felix Browder(其父是美国共产党领袖)。
:看文献,美国数学会曾经有一个计划想出一个类似希尔伯特23问题
:的纲领。Felix Browder是这个计划的领衔数学家,其它名家比如
:陈省身只是写其中一个部分。
:他就是试图按这个一般的代数路子去研究泛函分析。当时看上去很伟大很雄:心勃勃。
:他做了很多文章,
:比如单调算子方法结合上下解(他必须结合)解反应扩散方程等。最后
:他的结果很多可能是空集。比如就算所做的方程中你定义的算子是单调的
:也有上下解,该问题不见得有解。
:所以你去查wikipedia,他的页面缩得很小,
:也并没有关于他的具体的数学成就的介绍。
:https://en.wikipedia.org/wiki/Felix_Browder
【在 k*****g 的大作中提到】 : : 谢谢。美国的新闻界除了华尔街日报不那么左之外, : 都是左派在控制。纽时是他们的头。 : 左派误事呀,哪国都是这个情况。
|
A******e 发帖数: 655 | 7 左逼的通病,政治上的极左的思维方式,限制住了他们的想象力。
数学这种东西天赋是一方面,creativity才是最终将真正天才和庸才分开的关键因素。
其实大部分极左,思维僵化,完全不open-minded,是不可能有真正的关键性的贡献的
,也不可能创造真正的文化,艺术和科学,看看前苏联和改开前的中国大陆就知道了。
这就是为什么“共产主义”的世界是个精神和物质都高度贫乏的世界。没有百家争鸣哪
来的百花齐放,没有百花齐放,说白了不就是个精神文化的沙漠。
对不起,我跑题了。
【在 k*****g 的大作中提到】 : 这个Felix Browder深受其父(美国共产党领袖)的影响,热衷于 : 宏大虚幻的乌托邦理想。他当时在数学界地位很高,曾得到 : National Medal of Science。这是美国科学家的最高荣誉。 : (华人中杨振宁、陈省身、丘成桐得到过此荣誉,李政道没有。) : 他也曾任美国数学学会的主席。 : 但他做的“建立通过宏大的非线性泛函分析的一般理论来应用到具体的 : 非线性问题解决问题”的路子有着根本性的错误。他的数学结果多数 : 是空集,及满足他构造的系统的东西是不存在的。 : 他的三弟Andrew Browder也是数学家,没那么偏激,但也很左。这种 : 源自父亲的空想也影响到他的数学研究。他也是研究宏大空洞的
|
A******e 发帖数: 655 | 8 现在“红脖子”最喜欢嘲笑”liberals“的地方,就是”Leftists don't know how to
meme." 为什么不能meme?就是因为已经完全丧失了想象力。没有想象力的人生,其实
真的很悲哀,只能subscribe一个已经僵死了几十年的ideology。
【在 A******e 的大作中提到】 : 左逼的通病,政治上的极左的思维方式,限制住了他们的想象力。 : 数学这种东西天赋是一方面,creativity才是最终将真正天才和庸才分开的关键因素。 : 其实大部分极左,思维僵化,完全不open-minded,是不可能有真正的关键性的贡献的 : ,也不可能创造真正的文化,艺术和科学,看看前苏联和改开前的中国大陆就知道了。 : 这就是为什么“共产主义”的世界是个精神和物质都高度贫乏的世界。没有百家争鸣哪 : 来的百花齐放,没有百花齐放,说白了不就是个精神文化的沙漠。 : 对不起,我跑题了。
|
k*****g 发帖数: 1 | 9
你没有跑题。完全切题,说得到位到点。
而且说的这点是有些人有着错误的相反的理解。
“
”
【在 A******e 的大作中提到】 : 左逼的通病,政治上的极左的思维方式,限制住了他们的想象力。 : 数学这种东西天赋是一方面,creativity才是最终将真正天才和庸才分开的关键因素。 : 其实大部分极左,思维僵化,完全不open-minded,是不可能有真正的关键性的贡献的 : ,也不可能创造真正的文化,艺术和科学,看看前苏联和改开前的中国大陆就知道了。 : 这就是为什么“共产主义”的世界是个精神和物质都高度贫乏的世界。没有百家争鸣哪 : 来的百花齐放,没有百花齐放,说白了不就是个精神文化的沙漠。 : 对不起,我跑题了。
|
k*****g 发帖数: 1 | 10 说得真好。
to
【在 A******e 的大作中提到】 : 现在“红脖子”最喜欢嘲笑”liberals“的地方,就是”Leftists don't know how to : meme." 为什么不能meme?就是因为已经完全丧失了想象力。没有想象力的人生,其实 : 真的很悲哀,只能subscribe一个已经僵死了几十年的ideology。
|