e***n 发帖数: 286 | 1 【 以下文字转载自 Computation 讨论区 】
发信人: erain (红花会大老板), 信区: Computation
标 题: 紧急求问: 是否可以将一个对称不定矩阵 A 分解为 A = B * B'
发信站: BBS 未名空间站 (Sat Apr 21 16:47:52 2007)
Urgent!
For any symmetric definite matrix, for sure we can factor it with Cholesky
method. How about symmetric indefinite matrix? I need factor such a matrix
A exactly into the product form
A = B * B'
where B' is the transpose of B and B is some n x n matrix ( not necessarily
to be triangular).
I know we can factor it with a LDLT method and fur | a******9 发帖数: 54 | 2 By "definite" you mean "positive definite", right?
If yes, then the answer is NO.
matrix
necessarily
【在 e***n 的大作中提到】 : 【 以下文字转载自 Computation 讨论区 】 : 发信人: erain (红花会大老板), 信区: Computation : 标 题: 紧急求问: 是否可以将一个对称不定矩阵 A 分解为 A = B * B' : 发信站: BBS 未名空间站 (Sat Apr 21 16:47:52 2007) : Urgent! : For any symmetric definite matrix, for sure we can factor it with Cholesky : method. How about symmetric indefinite matrix? I need factor such a matrix : A exactly into the product form : A = B * B' : where B' is the transpose of B and B is some n x n matrix ( not necessarily
| i********e 发帖数: 31 | |
|